These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34619194)

  • 1. Observation of surface precipitation of ferric molybdate on ferrihydrite: Implication for the mobility and fate of molybdate in natural and hydrometallurgical environments.
    Zhang J; Wang S; Ma X; Yao S; Lv H; Pan Y; Chernikov R; Heredia E; Lin J; Jia Y
    Sci Total Environ; 2022 Feb; 807(Pt 1):150749. PubMed ID: 34619194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of octahedral mono-molybdate and poly-molybdate onto hematite: A multi-technique approach.
    Zhang J; Coker VS; Mosselmans JFW; Shaw S
    J Hazard Mater; 2022 Jun; 431():128564. PubMed ID: 35359098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray absorption spectroscopic investigation of molybdenum multinuclear sorption mechanism at the Goethite-water interface.
    Arai Y
    Environ Sci Technol; 2010 Nov; 44(22):8491-6. PubMed ID: 20964355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic evidence for Ni(II) surface speciation at the iron oxyhydroxides-water interface.
    Arai Y
    Environ Sci Technol; 2008 Feb; 42(4):1151-6. PubMed ID: 18351086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of surface precipitation of arsenate on ferrihydrite.
    Jia Y; Xu L; Fang Z; Demopoulos GP
    Environ Sci Technol; 2006 May; 40(10):3248-53. PubMed ID: 16749689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption and speciation of molybdate in soils: Implications for molybdenum mobility and availability.
    Yang PT; Wang SL
    J Hazard Mater; 2021 Apr; 408():124934. PubMed ID: 33412442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uranium incorporation into aluminum-substituted ferrihydrite during iron(ii)-induced transformation.
    Massey MS; Lezama-Pacheco JS; Michel FM; Fendorf S
    Environ Sci Process Impacts; 2014 Sep; 16(9):2137-44. PubMed ID: 25124142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II).
    Hu Y; Xue Q; Tang J; Fan X; Chen H
    Chemosphere; 2019 May; 222():511-516. PubMed ID: 30721809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of uranium(VI) sorption on titanium dioxide by surface iron(III) species in ferric oxide/titanium dioxide systems.
    Comarmond MJ; Payne TE; Collins RN; Palmer G; Lumpkin GR; Angove MJ
    Environ Sci Technol; 2012 Oct; 46(20):11128-34. PubMed ID: 23013221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the Geochemical Model for Molybdenum Mineralization in the JEB Tailings Management Facility at McClean Lake, Saskatchewan: An X-ray Absorption Spectroscopy Study.
    Blanchard PE; Hayes JR; Grosvenor AP; Rowson J; Hughes K; Brown C
    Environ Sci Technol; 2015 Jun; 49(11):6504-9. PubMed ID: 25919895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A XAFS study of plain and composite iron(III) and chromium(III) hydroxides.
    Papassiopi N; Pinakidou F; Katsikini M; Antipas GS; Christou C; Xenidis A; Paloura EC
    Chemosphere; 2014 Sep; 111():169-76. PubMed ID: 24997915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II).
    Lan S; Ying H; Wang X; Liu F; Tan W; Huang Q; Zhang J; Feng X
    Water Res; 2018 Jan; 128():92-101. PubMed ID: 29091808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(VI).
    Boland DD; Collins RN; Payne TE; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1327-33. PubMed ID: 21210678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron(II)-activated phase transformation of Cd-bearing ferrihydrite: Implications for cadmium mobility and fate under anaerobic conditions.
    Zhao X; Yuan Z; Wang S; Pan Y; Chen N; Tunc A; Cheung K; Alparov A; Chen W; Deevsalar R; Lin J; Jia Y
    Sci Total Environ; 2022 Nov; 848():157719. PubMed ID: 35914597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: A spectroscopic and batch adsorption approach.
    Gao X; Root RA; Farrell J; Ela W; Chorover J
    Appl Geochem; 2013 Nov; 38():110-120. PubMed ID: 25382933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide.
    Wazne M; Korfiatis GP; Meng X
    Environ Sci Technol; 2003 Aug; 37(16):3619-24. PubMed ID: 12953874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. U(VI) sorption during ferrihydrite formation: Underpinning radioactive effluent treatment.
    Winstanley EH; Morris K; Abrahamsen-Mills LG; Blackham R; Shaw S
    J Hazard Mater; 2019 Mar; 366():98-104. PubMed ID: 30502577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mn-incorporated ferrihydrite for Cr(VI) immobilization: Adsorption behavior and the fate of Cr(VI) during aging.
    Liang C; Fu F; Tang B
    J Hazard Mater; 2021 Sep; 417():126073. PubMed ID: 34020359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coadsorption and subsequent redox conversion behaviors of As(III) and Cr(VI) on Al-containing ferrihydrite.
    Ding Z; Fu F; Dionysiou DD; Tang B
    Environ Pollut; 2018 Apr; 235():660-669. PubMed ID: 29331898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2).
    Bostick BC; Fendorf S; Helz GR
    Environ Sci Technol; 2003 Jan; 37(2):285-91. PubMed ID: 12564899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.