These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34619259)

  • 1. Waste tire derived carbon as potential anode for lithium-ion batteries.
    Veldevi T; Raghu S; Kalaivani RA; Shanmugharaj AM
    Chemosphere; 2022 Feb; 288(Pt 1):132438. PubMed ID: 34619259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Positive Effect of ZnS in Waste Tire Carbon as Anode for Lithium-Ion Batteries.
    Wang X; Zhou L; Li J; Han N; Li X; Liu G; Jia D; Ma Z; Song G; Zhu X; Peng Z; Zhang L
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33923132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries.
    Etacheri V; Hong CN; Pol VG
    Environ Sci Technol; 2015 Sep; 49(18):11191-8. PubMed ID: 26098219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine waste derived carbon materials for use as sulfur hosts for Lithium-Sulfur batteries.
    Forde R; Brandão ATSC; Bowman D; State S; Costa R; Enache LB; Enachescu M; Pereira CM; Ryan KM; Geaney H; McNulty D
    Bioresour Technol; 2024 Aug; 406():131065. PubMed ID: 38969241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode.
    Hernández-Rentero C; Marangon V; Olivares-Marín M; Gómez-Serrano V; Caballero Á; Morales J; Hassoun J
    J Colloid Interface Sci; 2020 Aug; 573():396-408. PubMed ID: 32304949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode.
    Hou H; Yao Y; Liu S; Duan J; Liao Q; Yu C; Li D; Dai Z
    Waste Manag; 2017 Jul; 65():147-152. PubMed ID: 28404509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New CuO-Fe
    Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J
    ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reutilization of the expired tetracycline for lithium ion battery anode.
    Hou H; Dai Z; Liu X; Yao Y; Liao Q; Yu C; Li D
    Sci Total Environ; 2018 Jul; 630():495-501. PubMed ID: 29486442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid.
    Wu XL; Chen LL; Xin S; Yin YX; Guo YG; Kong QS; Xia YZ
    ChemSusChem; 2010 Jun; 3(6):703-7. PubMed ID: 20480495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries.
    Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upgrading pyrolytic residue from waste tires to commercial carbon black.
    Zhang X; Li H; Cao Q; Jin L; Wang F
    Waste Manag Res; 2018 May; 36(5):436-444. PubMed ID: 29589516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling Waste Soot from Merchant Ships to Produce Anode Materials for Rechargeable Lithium-Ion Batteries.
    Lee WJ; Kim HV; Choi JH; Panomsuwan G; Lee YC; Rho BS; Kang J
    Sci Rep; 2018 Apr; 8(1):5601. PubMed ID: 29618781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anode carbonaceous material recovered from spent lithium-ion batteries in electric vehicles for environmental application.
    Anh Nguyen TH; Oh SY
    Waste Manag; 2021 Feb; 120():755-761. PubMed ID: 33234471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Chemically Activated Pyrolytic Carbon Black Derived from Waste Tires as a Candidate for Nanomaterial Precursor.
    González-González RB; González LT; Iglesias-González S; González-González E; Martinez-Chapa SO; Madou M; Alvarez MM; Mendoza A
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33172181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Lithium Insertion Voltage Single-Crystal H
    Guo Q; Chen L; Shan Z; Lee WSV; Xiao W; Liu Z; Liang J; Yang G; Xue J
    ChemSusChem; 2018 Jan; 11(1):299-310. PubMed ID: 29106030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery.
    He K; Zhang ZY; Zhang FS
    Waste Manag; 2021 Apr; 124():283-292. PubMed ID: 33640668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries.
    Raić M; Mikac L; Marić I; Štefanić G; Škrabić M; Gotić M; Ivanda M
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.