These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34619567)

  • 1. Optimization of imaging conditions for composition determination by annular dark field STEM.
    Firoozabadi S; Kükelhan P; Hepp T; Beyer A; Volz K
    Ultramicroscopy; 2021 Nov; 230():113387. PubMed ID: 34619567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous determination of local thickness and composition for ternary III-V semiconductors by aberration-corrected STEM.
    Kükelhan P; Beyer A; Firoozabadi S; Hepp T; Volz K
    Ultramicroscopy; 2019 Jun; 201():49-57. PubMed ID: 30927691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition determination of multinary III/V semiconductors via STEM HAADF multislice simulations.
    Duschek L; Beyer A; Oelerich JO; Volz K
    Ultramicroscopy; 2018 Feb; 185():15-20. PubMed ID: 29156397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition determination for quaternary III-V semiconductors by aberration-corrected STEM.
    Kükelhan P; Hepp T; Firoozabadi S; Beyer A; Volz K
    Ultramicroscopy; 2019 Nov; 206():112814. PubMed ID: 31310886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative composition determination by ADF-STEM at a low-angular regime: a combination of EFSTEM and 4DSTEM.
    Firoozabadi S; Kükelhan P; Beyer A; Lehr J; Heimes D; Volz K
    Ultramicroscopy; 2022 Oct; 240():113550. PubMed ID: 35724620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.
    Woehl T; Keller R
    Ultramicroscopy; 2016 Dec; 171():166-176. PubMed ID: 27690347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scattering intensity distribution dependence on collection angles in annular dark-field STEM-in-SEM images.
    Holm J
    Ultramicroscopy; 2018 Dec; 195():12-20. PubMed ID: 30172856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging.
    Beyer A; Belz J; Knaub N; Jandieri K; Volz K
    Ultramicroscopy; 2016 Oct; 169():1-10. PubMed ID: 27391526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy.
    Martinez GT; Rosenauer A; De Backer A; Verbeeck J; Van Aert S
    Ultramicroscopy; 2014 Feb; 137():12-9. PubMed ID: 24270003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative annular dark-field imaging of single-layer graphene.
    Yamashita S; Koshiya S; Ishizuka K; Kimoto K
    Microscopy (Oxf); 2015 Apr; 64(2):143-50. PubMed ID: 25637649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal experiment design for element specific atom counting using multiple annular dark field scanning transmission electron microscopy detectors.
    Sentürk DG; De Backer A; Friedrich T; Van Aert S
    Ultramicroscopy; 2022 Dec; 242():113626. PubMed ID: 36228399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of specimen thickness and composition in Al(x)Ga(1-x)N/GaN using high-angle annular dark field images.
    Rosenauer A; Gries K; Müller K; Pretorius A; Schowalter M; Avramescu A; Engl K; Lutgen S
    Ultramicroscopy; 2009 Aug; 109(9):1171-82. PubMed ID: 19497670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of ultrathin doping layers in semiconductors using high-angle annular dark field images.
    Liu CP; Preston AR; Boothroyd CB; Humphreys CJ
    J Microsc; 1999 Apr; 194(1):171-182. PubMed ID: 10320551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of plasmon excitations on atomic-resolution quantitative 4D scanning transmission electron microscopy.
    Beyer A; Krause FF; Robert HL; Firoozabadi S; Grieb T; Kükelhan P; Heimes D; Schowalter M; Müller-Caspary K; Rosenauer A; Volz K
    Sci Rep; 2020 Oct; 10(1):17890. PubMed ID: 33087734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: optimisation of imaging conditions.
    Yang H; Pennycook TJ; Nellist PD
    Ultramicroscopy; 2015 Apr; 151():232-239. PubMed ID: 25481091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Electron Microscope Parameters and Sample Thickness on High Angle Annular Dark Field Imaging.
    Yang P; Li Z; Yang Y; Li R; Qin L; Zou Y
    Scanning; 2022; 2022():8503314. PubMed ID: 35360524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local thickness and composition measurements from scanning convergent-beam electron diffraction of a binary non-crystalline material obtained by a pixelated detector.
    Nakazawa K; Mitsuishi K; Shibata K; Amma S; Mizoguchi T
    Ultramicroscopy; 2020 Oct; 217():113077. PubMed ID: 32795865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-angle annular dark-field imaging on a TEM/STEM system.
    Otten MT
    J Electron Microsc Tech; 1991 Feb; 17(2):221-30. PubMed ID: 2013823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate.
    Woehl TJ; White RM; Keller RR
    Microsc Microanal; 2016 Jun; 22(3):544-50. PubMed ID: 27153003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STEM imaging with a thin annular detector.
    Cowley JM
    J Electron Microsc (Tokyo); 2001; 50(3):147-55. PubMed ID: 11469403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.