These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
715 related articles for article (PubMed ID: 34619593)
1. Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment. Dasu K; Xia X; Siriwardena D; Klupinski TP; Seay B J Environ Manage; 2022 Jan; 301():113879. PubMed ID: 34619593 [TBL] [Abstract][Full Text] [Related]
2. Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Hepburn E; Madden C; Szabo D; Coggan TL; Clarke B; Currell M Environ Pollut; 2019 May; 248():101-113. PubMed ID: 30784829 [TBL] [Abstract][Full Text] [Related]
3. Per- and Polyfluorinated Alkyl Substances (PFAS) cycling within Michigan: Contaminated sites, landfills and wastewater treatment plants. Helmer RW; Reeves DM; Cassidy DP Water Res; 2022 Feb; 210():117983. PubMed ID: 34954365 [TBL] [Abstract][Full Text] [Related]
4. Impacts of Environmental and Engineered Processes on the PFAS Fingerprint of Fluorotelomer-Based AFFF. Balgooyen S; Remucal CK Environ Sci Technol; 2023 Jan; 57(1):244-254. PubMed ID: 36573898 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of per- and polyfluoroalkyl substances (PFAS) in leachate, gas condensate, stormwater and groundwater at landfills. Chen Y; Zhang H; Liu Y; Bowden JA; Tolaymat TM; Townsend TG; Solo-Gabriele HM Chemosphere; 2023 Mar; 318():137903. PubMed ID: 36669537 [TBL] [Abstract][Full Text] [Related]
6. Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills. Hamid H; Li LY; Grace JR Environ Pollut; 2018 Apr; 235():74-84. PubMed ID: 29275271 [TBL] [Abstract][Full Text] [Related]
7. Industrial sources of per- and polyfluoroalkyl substances (PFAS) to a sewershed in Ontario, Canada. Payne M; Kleywegt S; Ng CF Environ Sci Pollut Res Int; 2024 Feb; 31(10):16086-16091. PubMed ID: 38316740 [TBL] [Abstract][Full Text] [Related]
8. A review of the occurrence and microbial transformation of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foam (AFFF)-impacted environments. Yan PF; Dong S; Pennell KD; Cápiro NL Sci Total Environ; 2024 Jun; 927():171883. PubMed ID: 38531439 [TBL] [Abstract][Full Text] [Related]
9. Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties. Anderson RH; Long GC; Porter RC; Anderson JK Chemosphere; 2016 May; 150():678-685. PubMed ID: 26786021 [TBL] [Abstract][Full Text] [Related]
10. Nationwide occurrence and discharge mass load of per- and polyfluoroalkyl substances in effluent and biosolids: A snapshot from 75 wastewater treatment plants across Australia. Nguyen HT; Thai PK; Kaserzon SL; O'Brien JW; Mueller JF J Hazard Mater; 2024 May; 470():134203. PubMed ID: 38581874 [TBL] [Abstract][Full Text] [Related]
11. Spatial Trends of Anionic, Zwitterionic, and Cationic PFASs at an AFFF-Impacted Site. Nickerson A; Rodowa AE; Adamson DT; Field JA; Kulkarni PR; Kornuc JJ; Higgins CP Environ Sci Technol; 2021 Jan; 55(1):313-323. PubMed ID: 33351591 [TBL] [Abstract][Full Text] [Related]
12. Rapid quantitative analysis and suspect screening of per-and polyfluorinated alkyl substances (PFASs) in aqueous film-forming foams (AFFFs) and municipal wastewater samples by Nano-ESI-HRMS. Wu C; Wang Q; Chen H; Li M Water Res; 2022 Jul; 219():118542. PubMed ID: 35550967 [TBL] [Abstract][Full Text] [Related]
13. Concentrations of perfluoroalkyl and polyfluoroalkyl substances before and after full-scale landfill leachate treatment. Chen Y; Zhang H; Liu Y; Bowden JA; Tolaymat TM; Townsend TG; Solo-Gabriele HM Waste Manag; 2022 Nov; 153():110-120. PubMed ID: 36084369 [TBL] [Abstract][Full Text] [Related]
14. Estimating the number of airports potentially contaminated with perfluoroalkyl and polyfluoroalkyl substances from aqueous film forming foam: A Canadian example. Milley SA; Koch I; Fortin P; Archer J; Reynolds D; Weber KP J Environ Manage; 2018 Sep; 222():122-131. PubMed ID: 29807261 [TBL] [Abstract][Full Text] [Related]
15. Occurrence and contamination profile of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in Belgian wastewater using target, suspect and non-target screening approaches. Jeong Y; Da Silva KM; Iturrospe E; Fuiji Y; Boogaerts T; van Nuijs ALN; Koelmel J; Covaci A J Hazard Mater; 2022 Sep; 437():129378. PubMed ID: 35897185 [TBL] [Abstract][Full Text] [Related]
16. From Waste Collection Vehicles to Landfills: Indication of Per- and Polyfluoroalkyl Substance (PFAS) Transformation. Liu Y; Robey NM; Bowden JA; Tolaymat TM; da Silva BF; Solo-Gabriele HM; Townsend TG Environ Sci Technol Lett; 2021; 8():66-72. PubMed ID: 37850075 [TBL] [Abstract][Full Text] [Related]
17. Modeling avian exposures to perfluoroalkyl substances in aquatic habitats impacted by historical aqueous film forming foam releases. Larson ES; Conder JM; Arblaster JA Chemosphere; 2018 Jun; 201():335-341. PubMed ID: 29525662 [TBL] [Abstract][Full Text] [Related]
18. Examining changes in groundwater PFAS contamination from legacy landfills over a three-year period at Australia's largest urban renewal site. Currell M; Northby N; Netherway P Chemosphere; 2024 Mar; 352():141345. PubMed ID: 38307330 [TBL] [Abstract][Full Text] [Related]
19. Non-target and target screening of per- and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China. Liu T; Hu LX; Han Y; Dong LL; Wang YQ; Zhao JH; Liu YS; Zhao JL; Ying GG Sci Total Environ; 2022 Oct; 844():157021. PubMed ID: 35777559 [TBL] [Abstract][Full Text] [Related]
20. Target and suspect per- and polyfluoroalkyl substances in fish from an AFFF-impacted waterway. Nilsen E; Muensterman D; Carini L; Waite I; Payne S; Field JA; Peterson J; Hafley D; Farrer D; Jones GD Sci Total Environ; 2024 Jan; 906():167798. PubMed ID: 37838049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]