These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 34619598)
1. Genome-wide identification of microRNAs associated with osmotic stress and elucidation of the role of miR319 in Medicago ruthenica seedlings. Guo M; Li H; Zhu L; Wu Z; Li J; Li Z Plant Physiol Biochem; 2021 Nov; 168():53-61. PubMed ID: 34619598 [TBL] [Abstract][Full Text] [Related]
2. Genome-Wide Identification of microRNAs in Response to Salt/Alkali Stress in Cao C; Long R; Zhang T; Kang J; Wang Z; Wang P; Sun H; Yu J; Yang Q Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562933 [TBL] [Abstract][Full Text] [Related]
3. Utilization of Transcriptome, Small RNA, and Degradome Sequencing to Provide Insights Into Drought Stress and Rewatering Treatment in Shi R; Jiao W; Yun L; Zhang Z; Zhang X; Wang Q; Li Y; Mi F Front Plant Sci; 2021; 12():675903. PubMed ID: 34413864 [TBL] [Abstract][Full Text] [Related]
4. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Wang T; Chen L; Zhao M; Tian Q; Zhang WH BMC Genomics; 2011 Jul; 12():367. PubMed ID: 21762498 [TBL] [Abstract][Full Text] [Related]
5. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. Wang T; Ren L; Li C; Zhang D; Zhang X; Zhou G; Gao D; Chen R; Chen Y; Wang Z; Shi F; Farmer AD; Li Y; Zhou M; Young ND; Zhang WH BMC Biol; 2021 May; 19(1):96. PubMed ID: 33957908 [TBL] [Abstract][Full Text] [Related]
6. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Long RC; Li MN; Kang JM; Zhang TJ; Sun Y; Yang QC Physiol Plant; 2015 May; 154(1):13-27. PubMed ID: 25156209 [TBL] [Abstract][Full Text] [Related]
7. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. Zhao W; Li Z; Fan J; Hu C; Yang R; Qi X; Chen H; Zhao F; Wang S J Exp Bot; 2015 Aug; 66(15):4653-67. PubMed ID: 26002970 [TBL] [Abstract][Full Text] [Related]
8. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level. Chen L; Wang T; Zhao M; Zhang W Plant Sci; 2012 Mar; 184():14-9. PubMed ID: 22284705 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. Zhang Y; Zhu X; Chen X; Song C; Zou Z; Wang Y; Wang M; Fang W; Li X BMC Plant Biol; 2014 Oct; 14():271. PubMed ID: 25330732 [TBL] [Abstract][Full Text] [Related]
10. Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history. Yin M; Zhang S; Du X; Mateo RG; Guo W; Li A; Wang Z; Wu S; Chen J; Liu J; Ren G Mol Ecol Resour; 2021 Jul; 21(5):1641-1657. PubMed ID: 33615703 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterisation of microRNAs and their target genes in phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and 5'RACE analysis. Huen A; Bally J; Smith P BMC Genomics; 2018 Dec; 19(1):940. PubMed ID: 30558535 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the microRNA408-LACCASE5 module as a regulatory axis for photosynthetic efficiency in Zhang Y; Yan W; Qiao Y; Gao X; Tang F; Gao C; Shi F Front Genet; 2023; 14():1295222. PubMed ID: 38090155 [No Abstract] [Full Text] [Related]
13. Genome-wide analysis of the Glutathione S-Transferase family in wild Medicago ruthenica and drought-tolerant breeding application of MruGSTU39 gene in cultivated alfalfa. Wang T; Zhang D; Chen L; Wang J; Zhang WH Theor Appl Genet; 2022 Mar; 135(3):853-864. PubMed ID: 34817619 [TBL] [Abstract][Full Text] [Related]
14. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Chen L; Wang T; Zhao M; Tian Q; Zhang WH Planta; 2012 Feb; 235(2):375-86. PubMed ID: 21909758 [TBL] [Abstract][Full Text] [Related]
15. Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. Zeng X; Xu Y; Jiang J; Zhang F; Ma L; Wu D; Wang Y; Sun W BMC Plant Biol; 2018 Mar; 18(1):52. PubMed ID: 29587648 [TBL] [Abstract][Full Text] [Related]
16. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background. Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720 [TBL] [Abstract][Full Text] [Related]
17. The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome. Formey D; Sallet E; Lelandais-Brière C; Ben C; Bustos-Sanmamed P; Niebel A; Frugier F; Combier JP; Debellé F; Hartmann C; Poulain J; Gavory F; Wincker P; Roux C; Gentzbittel L; Gouzy J; Crespi M Genome Biol; 2014 Sep; 15(9):457. PubMed ID: 25248950 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. Li D; Zhang Y; Hu X; Shen X; Ma L; Su Z; Wang T; Dong J BMC Plant Biol; 2011 Jul; 11():109. PubMed ID: 21718548 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Zhou ZS; Zeng HQ; Liu ZP; Yang ZM Plant Cell Environ; 2012 Jan; 35(1):86-99. PubMed ID: 21895696 [TBL] [Abstract][Full Text] [Related]
20. Identification of tissue-specific and cold-responsive lncRNAs in Medicago truncatula by high-throughput RNA sequencing. Zhao M; Wang T; Sun T; Yu X; Tian R; Zhang WH BMC Plant Biol; 2020 Mar; 20(1):99. PubMed ID: 32138663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]