BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 34619810)

  • 1. Using ConSurf to Detect Functionally Important Regions in RNA.
    Rubin M; Ben-Tal N
    Curr Protoc; 2021 Oct; 1(10):e270. PubMed ID: 34619810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins.
    Ben Chorin A; Masrati G; Kessel A; Narunsky A; Sprinzak J; Lahav S; Ashkenazy H; Ben-Tal N
    Protein Sci; 2020 Jan; 29(1):258-267. PubMed ID: 31702846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ConSurf-HSSP database: the mapping of evolutionary conservation among homologs onto PDB structures.
    Glaser F; Rosenberg Y; Kessel A; Pupko T; Ben-Tal N
    Proteins; 2005 Feb; 58(3):610-7. PubMed ID: 15614759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures.
    Goldenberg O; Erez E; Nimrod G; Ben-Tal N
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D323-7. PubMed ID: 18971256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules.
    Ashkenazy H; Abadi S; Martz E; Chay O; Mayrose I; Pupko T; Ben-Tal N
    Nucleic Acids Res; 2016 Jul; 44(W1):W344-50. PubMed ID: 27166375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using evolutionary data to make sense of macromolecules with a "face-lifted" ConSurf.
    Yariv B; Yariv E; Kessel A; Masrati G; Chorin AB; Martz E; Mayrose I; Pupko T; Ben-Tal N
    Protein Sci; 2023 Mar; 32(3):e4582. PubMed ID: 36718848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information.
    Glaser F; Pupko T; Paz I; Bell RE; Bechor-Shental D; Martz E; Ben-Tal N
    Bioinformatics; 2003 Jan; 19(1):163-4. PubMed ID: 12499312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids.
    Ashkenazy H; Erez E; Martz E; Pupko T; Ben-Tal N
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W529-33. PubMed ID: 20478830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures.
    Landau M; Mayrose I; Rosenberg Y; Glaser F; Martz E; Pupko T; Ben-Tal N
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W299-302. PubMed ID: 15980475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The choice of sequence homologs included in multiple sequence alignments has a dramatic impact on evolutionary conservation analysis.
    Gil N; Fiser A
    Bioinformatics; 2019 Jan; 35(1):12-19. PubMed ID: 29947739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EvoRator: Prediction of Residue-level Evolutionary Rates from Protein Structures Using Machine Learning.
    Nagar N; Ben Tal N; Pupko T
    J Mol Biol; 2022 Jun; 434(11):167538. PubMed ID: 35662466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. INTREPID--INformation-theoretic TREe traversal for Protein functional site IDentification.
    Sankararaman S; Sjölander K
    Bioinformatics; 2008 Nov; 24(21):2445-52. PubMed ID: 18776193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary analysis reveals collective properties and specificity in the C-type lectin and lectin-like domain superfamily.
    Ebner S; Sharon N; Ben-Tal N
    Proteins; 2003 Oct; 53(1):44-55. PubMed ID: 12945048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico identification of functional protein interfaces.
    Bell RE; Ben-Tal N
    Comp Funct Genomics; 2003; 4(4):420-3. PubMed ID: 18629079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical guide for the computational selection of residues to be experimentally characterized in protein families.
    Benítez-Páez A; Cárdenas-Brito S; Gutiérrez AJ
    Brief Bioinform; 2012 May; 13(3):329-36. PubMed ID: 21930656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zebra2: advanced and easy-to-use web-server for bioinformatic analysis of subfamily-specific and conserved positions in diverse protein superfamilies.
    Suplatov D; Sharapova Y; Geraseva E; Švedas V
    Nucleic Acids Res; 2020 Jul; 48(W1):W65-W71. PubMed ID: 32313959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server.
    Cannone JJ; Sweeney BA; Petrov AI; Gutell RR; Zirbel CL; Leontis N
    Nucleic Acids Res; 2015 Jul; 43(W1):W15-23. PubMed ID: 26048960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Obtaining extremely large and accurate protein multiple sequence alignments from curated hierarchical alignments.
    Neuwald AF; Lanczycki CJ; Hodges TK; Marchler-Bauer A
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32500917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QuasiMotiFinder: protein annotation by searching for evolutionarily conserved motif-like patterns.
    Gutman R; Berezin C; Wollman R; Rosenberg Y; Ben-Tal N
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W255-61. PubMed ID: 15980465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for localizing ligand binding pockets in protein structures.
    Glaser F; Morris RJ; Najmanovich RJ; Laskowski RA; Thornton JM
    Proteins; 2006 Feb; 62(2):479-88. PubMed ID: 16304646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.