These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 34619961)

  • 1. Integrating Computation and Experiment to Investigate Photoelectrodes for Solar Water Splitting at the Microscopic Scale.
    Wang W; Radmilovic A; Choi KS; Galli G
    Acc Chem Res; 2021 Oct; 54(20):3863-3872. PubMed ID: 34619961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting.
    Lee DK; Lee D; Lumley MA; Choi KS
    Chem Soc Rev; 2019 Apr; 48(7):2126-2157. PubMed ID: 30499570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting.
    Wang W; Xu M; Xu X; Zhou W; Shao Z
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):136-152. PubMed ID: 30790407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial Charge Transport in 1D TiO
    Yu Z; Liu H; Zhu M; Li Y; Li W
    Small; 2021 Mar; 17(9):e1903378. PubMed ID: 31657147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives.
    Liu D; Kuang Y
    Adv Mater; 2024 Sep; 36(37):e2311692. PubMed ID: 38619834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploratory Study of Zn
    Lin H; Long X; Hu J; Qiu Y; Wang Z; Ma M; An Y; Yang S
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10918-10926. PubMed ID: 29578676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin film photoelectrodes for solar water splitting.
    He Y; Hamann T; Wang D
    Chem Soc Rev; 2019 Apr; 48(7):2182-2215. PubMed ID: 30667004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the relationship between photoelectrochemical performance and interface hole trapping in CuBi
    Song A; Levine I; van de Krol R; Dittrich T; Berglund SP
    Chem Sci; 2020 Sep; 11(41):11195-11204. PubMed ID: 34094360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in the Surface Modification of Photoelectrodes toward Efficient and Stable Overall Water Splitting.
    Kaneko H; Minegishi T; Domen K
    Chemistry; 2018 Apr; 24(22):5697-5706. PubMed ID: 29057534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting.
    Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC
    ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environment-Benign Colloidal Quantum Dots-Modified Dual Photoelectrodes for Self-Biased Photoelectrochemical Water Splitting.
    Xia L; Li X; Yang Y; Tong X
    ChemSusChem; 2024 Aug; ():e202401298. PubMed ID: 39115637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.
    Varadhan P; Fu HC; Priante D; Retamal JR; Zhao C; Ebaid M; Ng TK; Ajia I; Mitra S; Roqan IS; Ooi BS; He JH
    Nano Lett; 2017 Mar; 17(3):1520-1528. PubMed ID: 28177248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon based photoelectrodes for photoelectrochemical water splitting.
    Fan R; Mi Z; Shen M
    Opt Express; 2019 Feb; 27(4):A51-A80. PubMed ID: 30876004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical Green Hydrogen Production Utilizing ZnO Nanostructured Photoelectrodes.
    Al-Saeedi SI
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting.
    Wang S; Liu G; Wang L
    Chem Rev; 2019 Apr; 119(8):5192-5247. PubMed ID: 30875200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Compositional Investigations on the Stability of Cuprous Oxide Nanowire Photocathodes for Photoelectrochemical Water Splitting.
    Son MK; Pan L; Mayer MT; Hagfeldt A; Grätzel M; Luo J
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55080-55091. PubMed ID: 34761678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting.
    Wang X; Ma S; Liu B; Wang S; Huang W
    Chem Commun (Camb); 2023 Aug; 59(67):10044-10066. PubMed ID: 37551587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting.
    Zhou J; Cheng H; Cheng J; Wang L; Xu H
    Small Methods; 2024 Feb; 8(2):e2300418. PubMed ID: 37421184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.