These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 3462002)
21. The vanadium-iron protein of vanadium nitrogenase from Azotobacter chroococcum contains an iron-vanadium cofactor. Smith BE; Eady RR; Lowe DJ; Gormal C Biochem J; 1988 Feb; 250(1):299-302. PubMed ID: 2833236 [TBL] [Abstract][Full Text] [Related]
22. A new method for extraction of iron-molybdenum cofactor (FeMoco) from nitrogenase adsorbed to DEAE-cellulose. 2. Solubilization of FeMoco in a wide range of organic solvents. Wink DA; McLean PA; Hickman AB; Orme-Johnson WH Biochemistry; 1989 Nov; 28(24):9407-12. PubMed ID: 2611240 [TBL] [Abstract][Full Text] [Related]
23. Synthesis of a molecular Mo2Fe6S9 cluster with the topology of the PN cluster of nitrogenase by rearrangement of an edge-bridged Mo2Fe6S8 double cubane. Zhang Y; Holm RH J Am Chem Soc; 2003 Apr; 125(13):3910-20. PubMed ID: 12656626 [TBL] [Abstract][Full Text] [Related]
24. The vanadium- and molybdenum-containing nitrogenases of Azotobacter chroococcum. Comparison of mid-point potentials and kinetics of reduction by sodium dithionite of the iron proteins with bound magnesium adenosine 5'-diphosphate. Bergström J; Eady RR; Thorneley RN Biochem J; 1988 Apr; 251(1):165-9. PubMed ID: 3164616 [TBL] [Abstract][Full Text] [Related]
25. Dimethylsulfide:acceptor oxidoreductase from Rhodobacter sulfidophilus. The purified enzyme contains b-type haem and a pterin molybdenum cofactor. Hanlon SP; Toh TH; Solomon PS; Holt RA; McEwan AG Eur J Biochem; 1996 Jul; 239(2):391-6. PubMed ID: 8706745 [TBL] [Abstract][Full Text] [Related]
26. Nitrogenase. VIII. Mössbauer and EPR spectroscopy. The MoFe protein component from Azotobacter vinelandii OP. Münck E; Rhodes H; Orme-Johnson WH; Davis LC; Brill WJ; Shah VK Biochim Biophys Acta; 1975 Jul; 400(1):32-53. PubMed ID: 167863 [TBL] [Abstract][Full Text] [Related]
27. Nitrogenase of Azotobacter chroococcum: a new electron-paramagnetic-resonance signal associated with a transient species of the Mo-Fe protein during catalysis. Yates MG; Lowe DJ FEBS Lett; 1976 Dec; 72(1):121-6. PubMed ID: 187450 [No Abstract] [Full Text] [Related]
28. Purification and properties of dimethyl sulphoxide reductase from Rhodobacter capsulatus. A periplasmic molybdoenzyme. McEwan AG; Ferguson SJ; Jackson JB Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):305-7. PubMed ID: 2001248 [TBL] [Abstract][Full Text] [Related]
29. Characterization of the molybdenum cofactor of sulfite oxidase, xanthine, oxidase, and nitrate reductase. Identification of a pteridine as a structural component. Johnson JL; Hainline BE; Rajagopalan KV J Biol Chem; 1980 Mar; 255(5):1783-6. PubMed ID: 6892571 [TBL] [Abstract][Full Text] [Related]
30. Kinetic studies on electron transfer and interaction between nitrogenase components from Azotobacter vinelandii. Hageman RV; Burris RH Biochemistry; 1978 Oct; 17(20):4117-24. PubMed ID: 708696 [TBL] [Abstract][Full Text] [Related]
31. Assay and detection of the molybdenum cofactor. Hageman RV; Rajagopalan KV Methods Enzymol; 1986; 122():399-412. PubMed ID: 2939319 [No Abstract] [Full Text] [Related]
32. Structural insights into a protein-bound iron-molybdenum cofactor precursor. Corbett MC; Hu Y; Fay AW; Ribbe MW; Hedman B; Hodgson KO Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1238-43. PubMed ID: 16423898 [TBL] [Abstract][Full Text] [Related]
33. Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family. Bray RC; Adams B; Smith AT; Bennett B; Bailey S Biochemistry; 2000 Sep; 39(37):11258-69. PubMed ID: 10985771 [TBL] [Abstract][Full Text] [Related]
34. Circular dichroism and magnetic circular dichroism of reduced molybdenum-iron protein of Azotobacter vinelandii nitrogenase. Stephens PJ; McKenna CE; McKenna MC; Nguyen HT; Devlin F Biochemistry; 1981 May; 20(10):2857-64. PubMed ID: 6941811 [TBL] [Abstract][Full Text] [Related]
35. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase. Miller RW; Eady RR Biochem J; 1988 Dec; 256(2):429-32. PubMed ID: 3223922 [TBL] [Abstract][Full Text] [Related]
36. Nitrogenase Cofactor Assembly: An Elemental Inventory. Sickerman NS; Ribbe MW; Hu Y Acc Chem Res; 2017 Nov; 50(11):2834-2841. PubMed ID: 29064664 [TBL] [Abstract][Full Text] [Related]
37. Molybdenum-cofactor-containing enzymes: structure and mechanism. Kisker C; Schindelin H; Rees DC Annu Rev Biochem; 1997; 66():233-67. PubMed ID: 9242907 [TBL] [Abstract][Full Text] [Related]
38. The molybdenum--iron protein of Klebsiella pneumoniae nitrogenase. Evidence for non-identical subunits from peptide 'mapping'. Kennedy C; Eady RR; Kondorosi E; Rekosh DK Biochem J; 1976 May; 155(2):383-9. PubMed ID: 779772 [TBL] [Abstract][Full Text] [Related]
39. Molybdenum in nitrogenase. Shah VK; Ugalde RA; Imperial J; Brill WJ Annu Rev Biochem; 1984; 53():231-57. PubMed ID: 6383195 [No Abstract] [Full Text] [Related]
40. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase. Hawkes TR; Bray RC Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]