BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34620338)

  • 41. Resting energy expenditure by indirect calorimetry versus the ventilator-VCO
    Koekkoek WAC; Xiaochen G; van Dijk D; van Zanten ARH
    Clin Nutr ESPEN; 2020 Oct; 39():137-143. PubMed ID: 32859307
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Resting energy expenditure in children and adolescents: agreement between calorimetry and prediction equations.
    Rodríguez G; Moreno LA; Sarría A; Fleta J; Bueno M
    Clin Nutr; 2002 Jun; 21(3):255-60. PubMed ID: 12127936
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Point-Counterpoint: Indirect Calorimetry Is not Necessary for Optimal Nutrition Therapy in Critical Illness.
    McClave SA; Omer E
    Nutr Clin Pract; 2021 Apr; 36(2):268-274. PubMed ID: 33769598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of Measured Energy Expenditure Using Indirect Calorimetry vs Predictive Equations for Liver Transplant Recipients.
    Lee SJ; Lee HJ; Jung YJ; Han M; Lee SG; Hong SK
    JPEN J Parenter Enteral Nutr; 2021 May; 45(4):761-767. PubMed ID: 32458439
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of the Beacon and Quark indirect calorimetry devices to measure resting energy expenditure in ventilated ICU patients.
    Slingerland-Boot H; Adhikari S; Mensink MR; van Zanten ARH
    Clin Nutr ESPEN; 2022 Apr; 48():370-377. PubMed ID: 35331516
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accuracy of predictive equations for resting energy expenditure estimation in mechanically ventilated Thai patients.
    Kongpolprom N
    Asian Biomed (Res Rev News); 2023 Feb; 17(1):30-38. PubMed ID: 37551199
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of resting energy expenditure measured with metabolic cart and calculated with predictive formulas in critically ill patients on mechanical ventilation.
    Taboni A; Vinetti G; Piva S; Gorghelli G; Ferretti G; Fagoni N
    Respir Physiol Neurobiol; 2023 May; 311():104025. PubMed ID: 36739955
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of resting energy expenditure in severely obese Italian women.
    Lazzer S; Agosti F; Silvestri P; Derumeaux-Burel H; Sartorio A
    J Endocrinol Invest; 2007 Jan; 30(1):20-7. PubMed ID: 17318018
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measuring energy requirements during pulmonary exacerbations of cystic fibrosis using indirect calorimetry.
    McCafferty K; Henderson J; Mulrennan S; Jamieson J; Properzi C; Tai A
    Nutrition; 2023 Aug; 112():112073. PubMed ID: 37263161
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Energy Expenditure and Liver Transplantation: What We Know and Where We Are.
    Santos BC; Correia MITD; Anastácio LR
    JPEN J Parenter Enteral Nutr; 2021 Mar; 45(3):456-464. PubMed ID: 32744332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Resting energy expenditure after Roux-en Y gastric bypass surgery.
    Wilms B; Ernst B; Thurnheer M; Schmid SM; Spengler CM; Schultes B
    Surg Obes Relat Dis; 2018 Feb; 14(2):191-199. PubMed ID: 29275093
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Energy expenditure in COVID-19 mechanically ventilated patients: A comparison of three methods of energy estimation.
    Saseedharan S; Chada RR; Kadam V; Chiluka A; Nagalla B
    JPEN J Parenter Enteral Nutr; 2022 Nov; 46(8):1875-1882. PubMed ID: 35526145
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measured versus calculated resting energy expenditure in critically ill adult patients. Do mathematics match the gold standard?
    De Waele E; Opsomer T; Honoré PM; Diltoer M; Mattens S; Huyghens L; Spapen H
    Minerva Anestesiol; 2015 Mar; 81(3):272-82. PubMed ID: 25077603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Resting energy expenditure in cancer patients: Agreement between predictive equations and indirect calorimetry.
    Barcellos PS; Borges N; Torres DPM
    Clin Nutr ESPEN; 2021 Apr; 42():286-291. PubMed ID: 33745594
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity.
    Flancbaum L; Choban PS; Bradley LR; Burge JC
    Surgery; 1997 Nov; 122(5):943-9. PubMed ID: 9369895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased resting energy expenditure compared with predictive theoretical equations in amyotrophic lateral sclerosis.
    Jésus P; Fayemendy P; Marin B; Nicol M; Sourisseau H; Boirie Y; Walrand S; Achamrah N; Coëffier M; Preux PM; Lautrette G; Couratier P; Desport JC
    Nutrition; 2020 Sep; 77():110805. PubMed ID: 32371347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Challenges to nutrition therapy in the pediatric critically ill obese patient.
    Martinez EE; Ariagno K; Arriola A; Lara K; Mehta NM
    Nutr Clin Pract; 2015 Jun; 30(3):432-9. PubMed ID: 25667233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy Expenditure in Critically Ill Adult Patients With Acute Brain Injury: Indirect Calorimetry vs. Predictive Equations.
    Morbitzer KA; Wilson WS; Chaben AC; Darby A; Dehne KA; Brown ER; Rhoney DH; Jordan JD
    Front Neurol; 2019; 10():1426. PubMed ID: 32038469
    [No Abstract]   [Full Text] [Related]  

  • 59. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child.
    Sion-Sarid R; Cohen J; Houri Z; Singer P
    Nutrition; 2013 Sep; 29(9):1094-9. PubMed ID: 23927944
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept.
    Stapel SN; de Grooth HJ; Alimohamad H; Elbers PW; Girbes AR; Weijs PJ; Oudemans-van Straaten HM
    Crit Care; 2015 Oct; 19():370. PubMed ID: 26494245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.