These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34620490)

  • 21. Associations between Chinese adolescents subjected to traditional and cyber bullying and suicidal ideation, self-harm and suicide attempts.
    Peng Z; Klomek AB; Li L; Su X; Sillanmäki L; Chudal R; Sourander A
    BMC Psychiatry; 2019 Oct; 19(1):324. PubMed ID: 31660917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting Lifetime Suicide Attempts in a Community Sample of Adolescents Using Machine Learning Algorithms.
    Jankowsky K; Steger D; Schroeders U
    Assessment; 2024 Apr; 31(3):557-573. PubMed ID: 37092544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine Learning-Based Prediction of Suicidal Thinking in Adolescents by Derivation and Validation in 3 Independent Worldwide Cohorts: Algorithm Development and Validation Study.
    Kim H; Son Y; Lee H; Kang J; Hammoodi A; Choi Y; Kim HJ; Lee H; Fond G; Boyer L; Kwon R; Woo S; Yon DK
    J Med Internet Res; 2024 May; 26():e55913. PubMed ID: 38758578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using machine learning to classify suicide attempt history among youth in medical care settings.
    Burke TA; Jacobucci R; Ammerman BA; Alloy LB; Diamond G
    J Affect Disord; 2020 May; 268():206-214. PubMed ID: 32174479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How do explicit, implicit, and sociodemographic measures relate to concurrent suicidal ideation? A comparative machine learning approach.
    Freichel R; Kahveci S; O'Shea B
    Suicide Life Threat Behav; 2024 Feb; 54(1):49-60. PubMed ID: 37960948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying the suicidal ideation risk group among older adults in rural areas: Developing a predictive model using machine learning methods.
    Kim J; Gwak D; Kim S; Gang M
    J Adv Nurs; 2023 Feb; 79(2):641-651. PubMed ID: 36534434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning prediction of suicidal ideation, planning, and attempt among Korean adults: A population-based study.
    Lee J; Pak TY
    SSM Popul Health; 2022 Sep; 19():101231. PubMed ID: 36263295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting suicidal risk using MMPI-2 based on machine learning algorithm.
    Kim S; Lee HK; Lee K
    Sci Rep; 2021 Jul; 11(1):15310. PubMed ID: 34321546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine Learning Assessment of Early Life Factors Predicting Suicide Attempt in Adolescence or Young Adulthood.
    Navarro MC; Ouellet-Morin I; Geoffroy MC; Boivin M; Tremblay RE; Côté SM; Orri M
    JAMA Netw Open; 2021 Mar; 4(3):e211450. PubMed ID: 33710292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting suicide attempt or suicide death following a visit to psychiatric specialty care: A machine learning study using Swedish national registry data.
    Chen Q; Zhang-James Y; Barnett EJ; Lichtenstein P; Jokinen J; D'Onofrio BM; Faraone SV; Larsson H; Fazel S
    PLoS Med; 2020 Nov; 17(11):e1003416. PubMed ID: 33156863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting Future Suicide Attempts Among Adolescent and Emerging Adult Psychiatric Emergency Patients.
    Horwitz AG; Czyz EK; King CA
    J Clin Child Adolesc Psychol; 2015; 44(5):751-61. PubMed ID: 24871489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Are Suicidal Thoughts and Behaviors a Temporary Phenomenon in Early Adolescence?
    van Vuuren CL; van der Wal MF; Cuijpers P; Chinapaw MJM
    Crisis; 2021 Jan; 42(1):78-81. PubMed ID: 32228038
    [No Abstract]   [Full Text] [Related]  

  • 33. Association of atopic dermatitis with depressive symptoms and suicidal behaviors among adolescents in Korea: the 2013 Korean Youth Risk Behavior Survey.
    Lee S; Shin A
    BMC Psychiatry; 2017 Jan; 17(1):3. PubMed ID: 28049449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applying ideation-to-action theories to predict suicidal behavior among adolescents.
    Okado I; Floyd FJ; Goebert D; Sugimoto-Matsuda J; Hayashi K
    J Affect Disord; 2021 Dec; 295():1292-1300. PubMed ID: 34706443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suicidal ideation and attempted suicide amongst Chinese transgender persons: National population study.
    Chen R; Zhu X; Wright L; Drescher J; Gao Y; Wu L; Ying X; Qi J; Chen C; Xi Y; Ji L; Zhao H; Ou J; Broome MR
    J Affect Disord; 2019 Feb; 245():1126-1134. PubMed ID: 30699856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prospective prediction of suicide attempts in community adolescents and young adults, using regression methods and machine learning.
    Miché M; Studerus E; Meyer AH; Gloster AT; Beesdo-Baum K; Wittchen HU; Lieb R
    J Affect Disord; 2020 Mar; 265():570-578. PubMed ID: 31786028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suicide attempt risk predicts inconsistent self-reported suicide attempts: A machine learning approach using longitudinal data.
    Haghish EF; Czajkowski N; Walby FA; Qin P; Laeng B
    J Affect Disord; 2024 Jun; 355():495-504. PubMed ID: 38554882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detecting risk of suicide attempts among Chinese medical college students using a machine learning algorithm.
    Shen Y; Zhang W; Chan BSM; Zhang Y; Meng F; Kennon EA; Wu HE; Luo X; Zhang X
    J Affect Disord; 2020 Aug; 273():18-23. PubMed ID: 32421600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of changing trend in depression, suicidal ideation, and suicide attempts among adolescents with asthma and identification of associated factors: 11-year national data analysis in 788,411 participants.
    Kyung Y; Han YJ; Lee JS; Lee JH; Jo SH; Kim SH
    J Asthma; 2021 Jul; 58(7):921-931. PubMed ID: 33158389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of Suicidal Behaviors in the Middle-aged Population: Machine Learning Analyses of UK Biobank.
    Wang J; Qiu J; Zhu T; Zeng Y; Yang H; Shang Y; Yin J; Sun Y; Qu Y; Valdimarsdóttir UA; Song H
    JMIR Public Health Surveill; 2023 Feb; 9():e43419. PubMed ID: 36805366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.