These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 34621729)
1. Expression and Refolding of the Plant Chitinase From Sinelnikov IG; Siedhoff NE; Chulkin AM; Zorov IN; Schwaneberg U; Davari MD; Sinitsyna OA; Shcherbakova LA; Sinitsyn AP; Rozhkova AM Front Bioeng Biotechnol; 2021; 9():728501. PubMed ID: 34621729 [TBL] [Abstract][Full Text] [Related]
2. Structure prediction and network analysis of chitinases from the Cape sundew, Drosera capensis. Unhelkar MH; Duong VT; Enendu KN; Kelly JE; Tahir S; Butts CT; Martin RW Biochim Biophys Acta Gen Subj; 2017 Mar; 1861(3):636-643. PubMed ID: 28040565 [TBL] [Abstract][Full Text] [Related]
3. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). Jopcik M; Moravcikova J; Matusikova I; Bauer M; Rajninec M; Libantova J Planta; 2017 Feb; 245(2):313-327. PubMed ID: 27761648 [TBL] [Abstract][Full Text] [Related]
4. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Matusíková I; Salaj J; Moravcíková J; Mlynárová L; Nap JP; Libantová J Planta; 2005 Dec; 222(6):1020-7. PubMed ID: 16049675 [TBL] [Abstract][Full Text] [Related]
5. Biochemical and antifungal characteristics of recombinant class I chitinase from Drosera rotundifolia. Rajninec M; Jopcik M; Danchenko M; Libantova J Int J Biol Macromol; 2020 Oct; 161():854-863. PubMed ID: 32553964 [TBL] [Abstract][Full Text] [Related]
6. Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential. Durechova D; Jopcik M; Rajninec M; Moravcikova J; Libantova J Mol Biotechnol; 2019 Dec; 61(12):916-928. PubMed ID: 31555964 [TBL] [Abstract][Full Text] [Related]
7. Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.): chitinases in sundew tissues. Libantová J; Kämäräinen T; Moravcíková J; Matusíková I; Salaj J Mol Biol Rep; 2009 May; 36(5):851-6. PubMed ID: 18437530 [TBL] [Abstract][Full Text] [Related]
8. Molecular and functional evolution of class I chitinases for plant carnivory in the caryophyllales. Renner T; Specht CD Mol Biol Evol; 2012 Oct; 29(10):2971-85. PubMed ID: 22490823 [TBL] [Abstract][Full Text] [Related]
9. A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps. Pavlovič A; Krausko M; Adamec L Plant Physiol Biochem; 2016 Jul; 104():11-6. PubMed ID: 26998942 [TBL] [Abstract][Full Text] [Related]
10. Molecular docking and site-directed mutagenesis of a Bacillus thuringiensis chitinase to improve chitinolytic, synergistic lepidopteran-larvicidal and nematicidal activities. Ni H; Zeng S; Qin X; Sun X; Zhang S; Zhao X; Yu Z; Li L Int J Biol Sci; 2015; 11(3):304-15. PubMed ID: 25678849 [TBL] [Abstract][Full Text] [Related]
11. The Droserasin 1 PSI: A Membrane-Interacting Antimicrobial Peptide from the Carnivorous Plant Sprague-Piercy MA; Bierma JC; Crosby MG; Carpenter BP; Takahashi GR; Paulino J; Hung I; Zhang R; Kelly JE; Kozlyuk N; Chen X; Butts CT; Martin RW Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32709016 [TBL] [Abstract][Full Text] [Related]
13. Chitinases: in agriculture and human healthcare. Nagpure A; Choudhary B; Gupta RK Crit Rev Biotechnol; 2014 Sep; 34(3):215-32. PubMed ID: 23859124 [TBL] [Abstract][Full Text] [Related]
14. Protein structure networks provide insight into active site flexibility in esterase/lipases from the carnivorous plant Drosera capensis. Duong VT; Unhelkar MH; Kelly JE; Kim SH; Butts CT; Martin RW Integr Biol (Camb); 2018 Dec; 10(12):768-779. PubMed ID: 30516771 [TBL] [Abstract][Full Text] [Related]
15. Refolding process of cysteine-rich proteins:Chitinase as a model. Moghadam M; Ganji A; Varasteh A; Falak R; Sankian M Rep Biochem Mol Biol; 2015 Oct; 4(1):19-24. PubMed ID: 26989746 [TBL] [Abstract][Full Text] [Related]
16. Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin. Mithöfer A; Reichelt M; Nakamura Y Plant Biol (Stuttg); 2014 Sep; 16(5):982-7. PubMed ID: 24499476 [TBL] [Abstract][Full Text] [Related]
17. In Silico Characterization of a Unique Plant-Like "Loopful" GH19 Chitinase from Newly Isolated Chitinophaga sp. YS-16. Sharma S; Singh R; Kaur R Curr Microbiol; 2020 Sep; 77(9):2248-2257. PubMed ID: 32409863 [TBL] [Abstract][Full Text] [Related]
18. A rapid and efficient method for isolating high quality DNA from leaves of carnivorous plants from the Drosera genus. Biteau F; Nisse E; Hehn A; Miguel S; Hannewald P; Bourgaud F Mol Biotechnol; 2012 Jul; 51(3):247-53. PubMed ID: 22002226 [TBL] [Abstract][Full Text] [Related]
19. Insect chitinases: molecular biology and potential use as biopesticides. Kramer KJ; Muthukrishnan S Insect Biochem Mol Biol; 1997 Nov; 27(11):887-900. PubMed ID: 9501415 [TBL] [Abstract][Full Text] [Related]
20. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. Hatcher CR; Sommer U; Heaney LM; Millett J Ann Bot; 2021 Aug; 128(3):301-314. PubMed ID: 34077503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]