These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34622103)

  • 21. Hypercalciuria in familial hyperkalemia and hypertension with KLHL3 mutations.
    Mayan H; Carmon V; Oleinikov K; London S; Halevy R; Holtzman EJ; Tenenbaum-Rakover Y; Farfel Z; Hanukoglu A
    Nephron; 2015; 130(1):59-65. PubMed ID: 25925082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decreased KLHL3 expression is involved in the activation of WNK-OSR1/SPAK-NCC cascade in type 1 diabetic mice.
    Guo Q; Zhang Y; Jiang GR; Zhang C
    Pflugers Arch; 2021 Feb; 473(2):185-196. PubMed ID: 33432425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dietary electrolyte-driven responses in the renal WNK kinase pathway in vivo.
    O'Reilly M; Marshall E; Macgillivray T; Mittal M; Xue W; Kenyon CJ; Brown RW
    J Am Soc Nephrol; 2006 Sep; 17(9):2402-13. PubMed ID: 16899520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A familial case of pseudohypoaldosteronism type II (PHA2) with a novel mutation (D564N) in the acidic motif in WNK4.
    Sakoh T; Sekine A; Mori T; Mizuno H; Kawada M; Hiramatsu R; Hasegawa E; Hayami N; Yamanouchi M; Suwabe T; Sawa N; Ubara Y; Fujimaru T; Sohara E; Shinichi U; Hoshino J; Takaichi K
    Mol Genet Genomic Med; 2019 Jun; 7(6):e705. PubMed ID: 31044551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decreased KLHL3 expression is involved in the pathogenesis of pseudohypoaldosteronism type II caused by cullin 3 mutation in vivo.
    Yoshida S; Araki Y; Mori T; Sasaki E; Kasagi Y; Isobe K; Susa K; Inoue Y; Bomont P; Okado T; Rai T; Uchida S; Sohara E
    Clin Exp Nephrol; 2018 Dec; 22(6):1251-1257. PubMed ID: 29869755
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Sasaki E; Susa K; Mori T; Isobe K; Araki Y; Inoue Y; Yoshizaki Y; Ando F; Mori Y; Mandai S; Zeniya M; Takahashi D; Nomura N; Rai T; Uchida S; Sohara E
    Mol Cell Biol; 2017 Apr; 37(7):. PubMed ID: 28052936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8.
    Gong Y; Wang J; Yang J; Gonzales E; Perez R; Hou J
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4340-5. PubMed ID: 25831548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [WNK1 and WNK4, new players in salt and water homeostasis].
    Hadchouel J; Delaloy C; Jeunemaitre X
    Med Sci (Paris); 2005 Jan; 21(1):55-60. PubMed ID: 15639021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension.
    Hadchouel J; Soukaseum C; Büsst C; Zhou XO; Baudrie V; Zürrer T; Cambillau M; Elghozi JL; Lifton RP; Loffing J; Jeunemaitre X
    Proc Natl Acad Sci U S A; 2010 Oct; 107(42):18109-14. PubMed ID: 20921400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases.
    Hadchouel J; Ellison DH; Gamba G
    Annu Rev Physiol; 2016; 78():367-89. PubMed ID: 26863326
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3.
    McCormick JA; Yang CL; Zhang C; Davidge B; Blankenstein KI; Terker AS; Yarbrough B; Meermeier NP; Park HJ; McCully B; West M; Borschewski A; Himmerkus N; Bleich M; Bachmann S; Mutig K; Argaiz ER; Gamba G; Singer JD; Ellison DH
    J Clin Invest; 2014 Nov; 124(11):4723-36. PubMed ID: 25250572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4.
    Shibata S; Zhang J; Puthumana J; Stone KL; Lifton RP
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7838-43. PubMed ID: 23576762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation.
    Shibata S; Arroyo JP; Castañeda-Bueno M; Puthumana J; Zhang J; Uchida S; Stone KL; Lam TT; Lifton RP
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15556-61. PubMed ID: 25313067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type II caused by mutant KLHL3.
    Susa K; Sohara E; Takahashi D; Okado T; Rai T; Uchida S
    Biochem Biophys Res Commun; 2017 Sep; 491(3):727-732. PubMed ID: 28743496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Molecular Genetics of Gordon Syndrome.
    Mabillard H; Sayer JA
    Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31795491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kelch-like 3/Cullin 3 ubiquitin ligase complex and WNK signaling in salt-sensitive hypertension and electrolyte disorder.
    Sohara E; Uchida S
    Nephrol Dial Transplant; 2016 Sep; 31(9):1417-24. PubMed ID: 26152401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4.
    Chávez-Canales M; Zhang C; Soukaseum C; Moreno E; Pacheco-Alvarez D; Vidal-Petiot E; Castañeda-Bueno M; Vázquez N; Rojas-Vega L; Meermeier NP; Rogers S; Jeunemaitre X; Yang CL; Ellison DH; Gamba G; Hadchouel J
    Hypertension; 2014 Nov; 64(5):1047-53. PubMed ID: 25113964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Consequences of SPAK inactivation on Hyperkalemic Hypertension caused by WNK1 mutations: evidence for differential roles of WNK1 and WNK4.
    Rafael C; Soukaseum C; Baudrie V; Frère P; Hadchouel J
    Sci Rep; 2018 Feb; 8(1):3249. PubMed ID: 29459793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport.
    Yang CL; Zhu X; Wang Z; Subramanya AR; Ellison DH
    J Clin Invest; 2005 May; 115(5):1379-87. PubMed ID: 15841204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mouse model of pseudohypoaldosteronism type II reveals a novel mechanism of renal tubular acidosis.
    López-Cayuqueo KI; Chavez-Canales M; Pillot A; Houillier P; Jayat M; Baraka-Vidot J; Trepiccione F; Baudrie V; Büsst C; Soukaseum C; Kumai Y; Jeunemaître X; Hadchouel J; Eladari D; Chambrey R
    Kidney Int; 2018 Sep; 94(3):514-523. PubMed ID: 30146013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.