These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 34622439)
1. Loss of branches due to winter storms could favor deciduousness in oaks. Karban R; Pearse IS Am J Bot; 2021 Nov; 108(11):2309-2314. PubMed ID: 34622439 [TBL] [Abstract][Full Text] [Related]
2. Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments. Sancho-Knapik D; Escudero A; Mediavilla S; Scoffoni C; Zailaa J; Cavender-Bares J; Álvarez-Arenas TG; Molins A; Alonso-Forn D; Ferrio JP; Peguero-Pina JJ; Gil-Pelegrín E New Phytol; 2021 Apr; 230(2):521-534. PubMed ID: 33340114 [TBL] [Abstract][Full Text] [Related]
3. On the differential advantages of evergreenness and deciduousness in mediterranean oak woodlands: a flux perspective. Baldocchi DD; Ma S; Rambal S; Misson L; Ourcival JM; Limousin JM; Pereira J; Papale D Ecol Appl; 2010 Sep; 20(6):1583-97. PubMed ID: 20945761 [TBL] [Abstract][Full Text] [Related]
4. Contrasting functional strategies following severe drought in two Mediterranean oaks with different leaf habit: Quercus faginea and Quercus ilex subsp. rotundifolia. Alonso-Forn D; Peguero-Pina JJ; Ferrio JP; Mencuccini M; Mendoza-Herrer Ó; Sancho-Knapik D; Gil-Pelegrín E Tree Physiol; 2021 Mar; 41(3):371-387. PubMed ID: 33079165 [TBL] [Abstract][Full Text] [Related]
5. Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. Cavender-Bares J; Cortes P; Rambal S; Joffre R; Miles B; Rocheteau A New Phytol; 2005 Dec; 168(3):597-612. PubMed ID: 16313643 [TBL] [Abstract][Full Text] [Related]
6. Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity. Mediavilla S; Escudero A Tree Physiol; 2003 Oct; 23(14):987-96. PubMed ID: 12952785 [TBL] [Abstract][Full Text] [Related]
7. Ecologically driven selection of nonstructural carbohydrate storage in oak trees. Furze ME; Wainwright DK; Huggett BA; Knipfer T; McElrone AJ; Brodersen CR New Phytol; 2021 Oct; 232(2):567-578. PubMed ID: 34235751 [TBL] [Abstract][Full Text] [Related]
8. Seasonal trends in photosynthesis and electron transport during the Mediterranean summer drought in leaves of deciduous oaks. Osuna JL; Baldocchi DD; Kobayashi H; Dawson TE Tree Physiol; 2015 May; 35(5):485-500. PubMed ID: 25855663 [TBL] [Abstract][Full Text] [Related]
9. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species. Mediavilla S; Gallardo-López V; González-Zurdo P; Escudero A Int J Biometeorol; 2012 Sep; 56(5):915-26. PubMed ID: 21969112 [TBL] [Abstract][Full Text] [Related]
10. Leaf drop affects herbivory in oaks. Pearse IS; Karban R Oecologia; 2013 Nov; 173(3):925-32. PubMed ID: 23774946 [TBL] [Abstract][Full Text] [Related]
11. Leaf drop in evergreen Ceanothus velutinus as a means of reducing herbivory. Karban R Ecology; 2008 Sep; 89(9):2446-52. PubMed ID: 18831166 [TBL] [Abstract][Full Text] [Related]
12. Deciduous leaf drop reduces insect herbivory. Karban R Oecologia; 2007 Aug; 153(1):81-8. PubMed ID: 17375327 [TBL] [Abstract][Full Text] [Related]
13. Physiological basis of seasonal trend in leaf photosynthesis of five evergreen broad-leaved species in a temperate deciduous forest. Miyazawa Y; Kikuzawa K Tree Physiol; 2006 Feb; 26(2):249-56. PubMed ID: 16356922 [TBL] [Abstract][Full Text] [Related]
14. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand. Ishida A; Yamazaki JY; Harayama H; Yazaki K; Ladpala P; Nakano T; Adachi M; Yoshimura K; Panuthai S; Staporn D; Maeda T; Maruta E; Diloksumpun S; Puangchit L Tree Physiol; 2014 Jan; 34(1):15-28. PubMed ID: 24336612 [TBL] [Abstract][Full Text] [Related]
15. Growth reduction after defoliation is independent of CO Schmid S; Palacio S; Hoch G New Phytol; 2017 Jun; 214(4):1479-1490. PubMed ID: 28240369 [TBL] [Abstract][Full Text] [Related]
16. Winter photosynthesis by saplings of evergreen broad-leaved trees in a deciduous temperate forest. Miyazawa Y; Kikuzawa K New Phytol; 2005 Mar; 165(3):857-66. PubMed ID: 15720697 [TBL] [Abstract][Full Text] [Related]
17. Hydraulic conductivity, photosynthesis and leaf water balance in six evergreen woody species from fall to winter. Taneda H; Tateno M Tree Physiol; 2005 Mar; 25(3):299-306. PubMed ID: 15631978 [TBL] [Abstract][Full Text] [Related]
18. Do evergreen and deciduous trees have different effects on net N mineralization in soil? Mueller KE; Hobbie SE; Oleksyn J; Reich PB; Eissenstat DM Ecology; 2012 Jun; 93(6):1463-72. PubMed ID: 22834386 [TBL] [Abstract][Full Text] [Related]
19. Responses of the photosynthetic apparatus to winter conditions in broadleaved evergreen trees growing in warm temperate regions of Japan. Tanaka C; Nakano T; Yamazaki JY; Maruta E Plant Physiol Biochem; 2015 Jan; 86():147-154. PubMed ID: 25500451 [TBL] [Abstract][Full Text] [Related]
20. A cost-benefit analysis of leaf carbon economy with consideration of seasonal changes in leaf traits for sympatric deciduous and evergreen congeners: implications for their coexistence. Ye Y; Kitayama K; Onoda Y New Phytol; 2022 May; 234(3):1047-1058. PubMed ID: 35133649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]