These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34622483)

  • 21. The picture superiority effect in associative memory: A developmental study.
    Baadte C; Meinhardt-Injac B
    Br J Dev Psychol; 2019 Sep; 37(3):382-395. PubMed ID: 30756412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overlap in meaning is a stronger predictor of semantic activation in GPT-3 than in humans.
    Digutsch J; Kosinski M
    Sci Rep; 2023 Mar; 13(1):5035. PubMed ID: 36977744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Keystrokes: A practical exploration of semantic drift in timed word association tasks.
    MacNiven S; Tench R
    PLoS One; 2024; 19(7):e0305568. PubMed ID: 38950044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delta-band neural tracking primarily reflects rule-based chunking instead of semantic relatedness between words.
    Lu Y; Jin P; Ding N; Tian X
    Cereb Cortex; 2023 Apr; 33(8):4448-4458. PubMed ID: 36124831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Primacy of Experience in Language Processing: Semantic Priming Is Driven Primarily by Experiential Similarity.
    Fernandino L; Conant LL
    bioRxiv; 2023 Dec; ():. PubMed ID: 36993310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting Hand Movements With Distributional Semantics: Evidence From Mouse-Tracking.
    Gatti D; Marelli M; Rinaldi L
    Cogn Sci; 2024 Jan; 48(1):e13372. PubMed ID: 38196167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lexical factors and cerebral regions influencing verbal fluency performance in MCI.
    Clark DG; Wadley VG; Kapur P; DeRamus TP; Singletary B; Nicholas AP; Blanton PD; Lokken K; Deshpande H; Marson D; Deutsch G
    Neuropsychologia; 2014 Feb; 54():98-111. PubMed ID: 24384308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-SimVerb and Bio-SimLex: wide-coverage evaluation sets of word similarity in biomedicine.
    Chiu B; Pyysalo S; Vulić I; Korhonen A
    BMC Bioinformatics; 2018 Feb; 19(1):33. PubMed ID: 29402212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic and directed search processes in solving simple semantic-memory problems.
    Ben-Zur H
    Mem Cognit; 1989 Sep; 17(5):617-26. PubMed ID: 2796746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Associative priming in word fragment completion: a dissociation between explicit and implicit retrieval processes.
    Lombardi WJ
    Memory; 1997 Nov; 5(6):673-702. PubMed ID: 9497907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How to induce an age-related benefit of semantic relatedness in associative memory: It's all in the design.
    Delhaye E; Folville A; Bastin C
    Psychol Aging; 2019 Jun; 34(4):572-586. PubMed ID: 31081661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do Alzheimer's Disease Patients Benefit From Prior-Knowledge in Associative Recognition Memory?
    Delhaye E; Folville A; Simoes Loureiro I; Lefebvre L; Salmon E; Bastin C
    J Int Neuropsychol Soc; 2019 Apr; 25(4):443-452. PubMed ID: 30696494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tracking word semantic change in biomedical literature.
    Yan E; Zhu Y
    Int J Med Inform; 2018 Jan; 109():76-86. PubMed ID: 29195709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts.
    Mao Y; Fung KW
    J Am Med Inform Assoc; 2020 Oct; 27(10):1538-1546. PubMed ID: 33029614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Foraging in Semantic Fields: How We Search Through Memory.
    Hills TT; Todd PM; Jones MN
    Top Cogn Sci; 2015 Jul; 7(3):513-34. PubMed ID: 26097107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Latent structure in measures of associative, semantic, and thematic knowledge.
    Maki WS; Buchanan E
    Psychon Bull Rev; 2008 Jun; 15(3):598-603. PubMed ID: 18567261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating experiential and distributional data to learn semantic representations.
    Andrews M; Vigliocco G; Vinson D
    Psychol Rev; 2009 Jul; 116(3):463-98. PubMed ID: 19618982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can prediction-based distributional semantic models predict typicality?
    Heyman T; Heyman G
    Q J Exp Psychol (Hove); 2019 Aug; 72(8):2084-2109. PubMed ID: 30704340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corpus domain effects on distributional semantic modeling of medical terms.
    Pakhomov SV; Finley G; McEwan R; Wang Y; Melton GB
    Bioinformatics; 2016 Dec; 32(23):3635-3644. PubMed ID: 27531100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distributional Measures of Semantic Abstraction.
    Schulte Im Walde S; Frassinelli D
    Front Artif Intell; 2021; 4():796756. PubMed ID: 35252847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.