These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 34622686)
1. Growth Promotion of Giant Duckweed Toyama T; Mori K; Tanaka Y; Ike M; Morikawa M Mol Plant Microbe Interact; 2022 Jan; 35(1):28-38. PubMed ID: 34622686 [TBL] [Abstract][Full Text] [Related]
2. Duckweed-associated bacteria as plant growth-promotor to enhance growth of Spirodela polyrhiza in wastewater effluent from a poultry farm. Boonmak C; Kettongruang S; Buranathong B; Morikawa M; Duangmal K Arch Microbiol; 2023 Dec; 206(1):43. PubMed ID: 38148332 [TBL] [Abstract][Full Text] [Related]
3. The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Liu Y; Sanguanphun T; Yuan W; Cheng JJ; Meetam M Environ Sci Pollut Res Int; 2017 Aug; 24(23):19104-19113. PubMed ID: 28660513 [TBL] [Abstract][Full Text] [Related]
4. Metabolic flexibility during a trophic transition reveals the phenotypic plasticity of greater duckweed (Spirodela polyrhiza 7498). Sun Z; Zhao X; Li G; Yang J; Chen Y; Xia M; Hwang I; Hou H New Phytol; 2023 May; 238(4):1386-1402. PubMed ID: 36856336 [TBL] [Abstract][Full Text] [Related]
5. Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater. Wang W; Yang C; Tang X; Zhu Q; Pan K; Cai D; Hu Q; Ma D Environ Sci Pollut Res Int; 2015 Oct; 22(20):15804-11. PubMed ID: 26036587 [TBL] [Abstract][Full Text] [Related]
6. The change of accumulation of heavy metal drive interspecific facilitation under copper and cold stress. Shi H; Duan M; Li C; Zhang Q; Liu C; Liang S; Guan Y; Kang X; Zhao Z; Xiao G Aquat Toxicol; 2020 Aug; 225():105550. PubMed ID: 32593114 [TBL] [Abstract][Full Text] [Related]
7. Indigenous bacteria, an excellent reservoir of functional plant growth promoters for enhancing duckweed biomass yield on site. Khairina Y; Jog R; Boonmak C; Toyama T; Oyama T; Morikawa M Chemosphere; 2021 Apr; 268():129247. PubMed ID: 33383277 [TBL] [Abstract][Full Text] [Related]
8. Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23. Ishizawa H; Ogata Y; Hachiya Y; Tokura KI; Kuroda M; Inoue D; Toyama T; Tanaka Y; Mori K; Morikawa M; Ike M Chemosphere; 2020 Jan; 238():124682. PubMed ID: 31524619 [TBL] [Abstract][Full Text] [Related]
9. Light intensity drives different growth strategies in two duckweed species: Strzałek M; Kufel L PeerJ; 2021; 9():e12698. PubMed ID: 35036168 [TBL] [Abstract][Full Text] [Related]
10. Enhanced biomass production of duckweeds by inoculating a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23, in sterile medium and non-sterile environmental waters. Toyama T; Kuroda M; Ogata Y; Hachiya Y; Quach A; Tokura K; Tanaka Y; Mori K; Morikawa M; Ike M Water Sci Technol; 2017 Sep; 76(5-6):1418-1428. PubMed ID: 28953468 [TBL] [Abstract][Full Text] [Related]
11. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza). Chen D; Zhang H; Wang Q; Shao M; Li X; Chen D; Zeng R; Song Y J Hazard Mater; 2020 Aug; 395():122672. PubMed ID: 32305716 [TBL] [Abstract][Full Text] [Related]
12. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Hoang PTN; Schubert I Chromosoma; 2017 Dec; 126(6):729-739. PubMed ID: 28756515 [TBL] [Abstract][Full Text] [Related]
13. Enhancing biomass production and biochemical compositions of Spirodela polyrhiza through superhydrophobic cultivation platforms at low light intensity. Chua MX; Saravanan G; Cheah YT; Chan DJC Plant Physiol Biochem; 2024 Mar; 208():108485. PubMed ID: 38461755 [TBL] [Abstract][Full Text] [Related]
14. Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains. Tang J; Li Y; Ma J; Cheng JJ Plant Biol (Stuttg); 2015 Sep; 17(5):1066-72. PubMed ID: 25950142 [TBL] [Abstract][Full Text] [Related]
15. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Fu L; Ding Z; Sun X; Zhang J Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31554307 [TBL] [Abstract][Full Text] [Related]
16. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production. Ma YB; Zhu M; Yu CJ; Wang Y; Liu Y; Li ML; Sun YD; Zhao JS; Zhou GK Plant Biol (Stuttg); 2018 Mar; 20(2):357-364. PubMed ID: 29222918 [TBL] [Abstract][Full Text] [Related]
17. The "Duckweed Dip": Aquatic Islam T; Kalkar S; Tinker-Kulberg R; Ignatova T; Josephs EA ACS Synth Biol; 2024 Feb; 13(2):687-691. PubMed ID: 38127817 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent. Toyama T; Hanaoka T; Tanaka Y; Morikawa M; Mori K Bioresour Technol; 2018 Feb; 250():464-473. PubMed ID: 29197273 [TBL] [Abstract][Full Text] [Related]
19. Sulfamethoxazole removal and fuel-feedstock biomass production from wastewater in a phyto-Fenton process using duckweed culture. Toyama T; Kobayashi M; Rubiy Atno ; Morikawa M; Mori K Chemosphere; 2024 Aug; 361():142592. PubMed ID: 38866331 [TBL] [Abstract][Full Text] [Related]
20. Impact of pharmaceutical industry wastewater on stress physiological responses of Spirodela polyrhiza (L.) Schleiden. Parveen K; Kumari R; Malaviya P Environ Sci Pollut Res Int; 2023 Dec; 30(56):119275-119284. PubMed ID: 37924407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]