These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34623286)

  • 1. Transfer Learning Improves Accelerometer-Based Child Activity Recognition via Subject-Independent Adult-Domain Adaption.
    Li J; Kang P; Tan T; B Shull P
    IEEE J Biomed Health Inform; 2022 May; 26(5):2086-2095. PubMed ID: 34623286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of activity type in preschool children using machine learning techniques.
    Hagenbuchner M; Cliff DP; Trost SG; Van Tuc N; Peoples GE
    J Sci Med Sport; 2015 Jul; 18(4):426-31. PubMed ID: 25088983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.
    Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B
    Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities.
    Kwon S; Zavos P; Nickele K; Sugianto A; Albert MV
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31330889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition.
    Javed AR; Sarwar MU; Khan S; Iwendi C; Mittal M; Kumar N
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Dual-Accelerometer System for Classifying Physical Activity in Children and Adults.
    Stewart T; Narayanan A; Hedayatrad L; Neville J; Mackay L; Duncan S
    Med Sci Sports Exerc; 2018 Dec; 50(12):2595-2602. PubMed ID: 30048411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning for activity recognition: hip versus wrist data.
    Trost SG; Zheng Y; Wong WK
    Physiol Meas; 2014 Nov; 35(11):2183-9. PubMed ID: 25340887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers.
    Ahmadi MN; Brookes D; Chowdhury A; Pavey T; Trost SG
    Med Sci Sports Exerc; 2020 May; 52(5):1227-1234. PubMed ID: 31764460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging methods for measuring physical activity using accelerometry in children and adolescents with neuromotor disorders: a narrative review.
    Petersen BA; Erickson KI; Kurowski BG; Boninger ML; Treble-Barna A
    J Neuroeng Rehabil; 2024 Feb; 21(1):31. PubMed ID: 38419099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning to quantify habitual physical activity in children with cerebral palsy.
    Goodlich BI; Armstrong EL; Horan SA; Baque E; Carty CP; Ahmadi MN; Trost SG
    Dev Med Child Neurol; 2020 Sep; 62(9):1054-1060. PubMed ID: 32420632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of an Activity Type Recognition Model Classifying Daily Physical Behavior in Older Adults: The HAR70+ Model.
    Ustad A; Logacjov A; Trollebø SØ; Thingstad P; Vereijken B; Bach K; Maroni NS
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Problem of State Recognition in Injection Molding Based on Accelerometer Data Sets.
    Brunthaler J; Grabski P; Sturm V; Lubowski W; Efrosinin D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of children's activity type with accelerometer-based neural networks.
    de Vries SI; Engels M; Garre FG
    Med Sci Sports Exerc; 2011 Oct; 43(10):1994-9. PubMed ID: 21448085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Reidentifying Individuals in Large National Physical Activity Data Sets From Which Protected Health Information Has Been Removed With Use of Machine Learning.
    Na L; Yang C; Lo CC; Zhao F; Fukuoka Y; Aswani A
    JAMA Netw Open; 2018 Dec; 1(8):e186040. PubMed ID: 30646312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Activity Recognition Combining Inertial Motion Sensors and Electroencephalogram Signals.
    Graña M; Aguilar-Moreno M; De Lope Asiain J; Araquistain IB; Garmendia X
    Int J Neural Syst; 2020 Oct; 30(10):2050053. PubMed ID: 32917105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning to Quantify Physical Activity in Children with Cerebral Palsy: Comparison of Group, Group-Personalized, and Fully-Personalized Activity Classification Models.
    Ahmadi MN; O'Neil ME; Baque E; Boyd RN; Trost SG
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.