These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34623287)

  • 1. Improved and Secured Electromyography in the Internet of Health Things.
    Usman M; Kamal M; Tariq M
    IEEE J Biomed Health Inform; 2022 May; 26(5):2032-2040. PubMed ID: 34623287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent Neural Network for Contaminant Type Detector in Surface Electromyography Signals.
    Machado J; Tosin MC; Bagesteiro LB; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3759-3762. PubMed ID: 33018819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a deep neural network for automated electromyographic pattern classification.
    Akhundov R; Saxby DJ; Edwards S; Snodgrass S; Clausen P; Diamond LE
    J Exp Biol; 2019 Mar; 222(Pt 5):. PubMed ID: 30760552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hand Gesture Recognition Using Compact CNN Via Surface Electromyography Signals.
    Chen L; Fu J; Wu Y; Li H; Zheng B
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel feature modelling the prediction and detection of sEMG muscle fatigue towards an automated wearable system.
    Al-Mulla MR; Sepulveda F
    Sensors (Basel); 2010; 10(5):4838-54. PubMed ID: 22399910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long short-term memory (LSTM) recurrent neural network for muscle activity detection.
    Ghislieri M; Cerone GL; Knaflitz M; Agostini V
    J Neuroeng Rehabil; 2021 Oct; 18(1):153. PubMed ID: 34674720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoelectric Pattern Recognition Using Gramian Angular Field and Convolutional Neural Networks for Muscle-Computer Interface.
    Fan J; Wen J; Lai Z
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fault-Tolerant Sensor Detection of sEMG signals: Quality Analysis Using a Two-Class Support Vector Machine.
    Moura KOA; Ruschel RS; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5644-5647. PubMed ID: 30441616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracting effective features of SEMG using continuous wavelet transform.
    Kilby J; Hosseini HG
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1704-7. PubMed ID: 17946475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-dimensional matrix image based feature extraction method for classification of sEMG: A comparative analysis based on SVM, KNN and RBF-NN.
    Wen T; Zhang Z; Qiu M; Zeng M; Luo W
    J Xray Sci Technol; 2017; 25(2):287-300. PubMed ID: 28269818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning for Detection of Muscular Activity from Surface EMG Signals.
    Di Nardo F; Nocera A; Cucchiarelli A; Fioretti S; Morbidoni C
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress Detection from Surface Electromyography using Convolutional Neural Networks.
    Robles D; Benchekroun M; Zalc V; Istrate D; Taramasco C
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3235-3238. PubMed ID: 36086008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High accurate lightweight deep learning method for gesture recognition based on surface electromyography.
    Bahador A; Yousefi M; Marashi M; Bahador O
    Comput Methods Programs Biomed; 2020 Oct; 195():105643. PubMed ID: 32650088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal.
    Vijayvargiya A; Khimraj ; Kumar R; Dey N
    Phys Eng Sci Med; 2021 Dec; 44(4):1297-1309. PubMed ID: 34748192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Denoising of HD-sEMG signals using canonical correlation analysis.
    Al Harrach M; Boudaoud S; Hassan M; Ayachi FS; Gamet D; Grosset JF; Marin F
    Med Biol Eng Comput; 2017 Mar; 55(3):375-388. PubMed ID: 27221811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Segmentation Parallel CNN Model for Estimating Assembly Torque Using Surface Electromyography Signals.
    Chen C; Huang K; Li D; Zhao Z; Hong J
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cepstrum analysis-based classification method for hand movement surface EMG signals.
    Yavuz E; Eyupoglu C
    Med Biol Eng Comput; 2019 Oct; 57(10):2179-2201. PubMed ID: 31388900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A convolutional neural network to identify motor units from high-density surface electromyography signals in real time.
    Wen Y; Avrillon S; Hernandez-Pavon JC; Kim SJ; Hug F; Pons JL
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33721852
    [No Abstract]   [Full Text] [Related]  

  • 19. MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning.
    Nasr A; Bell S; He J; Whittaker RL; Jiang N; Dickerson CR; McPhee J
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352741
    [No Abstract]   [Full Text] [Related]  

  • 20. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG.
    Asif AR; Waris A; Gilani SO; Jamil M; Ashraf H; Shafique M; Niazi IK
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.