BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34623738)

  • 1. Deep learning-based classification and structure name standardization for organ at risk and target delineations in prostate cancer radiotherapy.
    Jamtheim Gustafsson C; Lempart M; Swärd J; Persson E; Nyholm T; Thellenberg Karlsson C; Scherman J
    J Appl Clin Med Phys; 2021 Dec; 22(12):51-63. PubMed ID: 34623738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.
    Balagopal A; Nguyen D; Morgan H; Weng Y; Dohopolski M; Lin MH; Barkousaraie AS; Gonzalez Y; Garant A; Desai N; Hannan R; Jiang S
    Med Image Anal; 2021 Aug; 72():102101. PubMed ID: 34111573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Automatic Delineation of Clinical Target Volume and Organ at Risk by Deep Learning for Prostate Cancer Adaptive Radiotherapy].
    Song X; Zhang X; Li J; Liang L; Yang Y; Li G; Bai S
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Nov; 46(6):691-695. PubMed ID: 36597401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.
    Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A
    Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based classification of organs at risk and delineation guideline in pelvic cancer radiation therapy.
    Lempart M; Scherman J; Nilsson MP; Jamtheim Gustafsson C
    J Appl Clin Med Phys; 2023 Sep; 24(9):e14022. PubMed ID: 37177830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes in target volumes definition by using MRI for prostate bed radiotherapy planning--preliminary results].
    Sefrová J; Paluska ; Odrázka K; Belobradek Z; Hoffmann P; Prosvic P; Brod'ák M; Louda M; Macingová Z; Vosmik M
    Klin Onkol; 2010; 23(4):256-63. PubMed ID: 20806824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of
    Walacides D; Meier A; Knöchelmann AC; Meinecke D; Derlin T; Bengel FM; Ross TL; Wester HJ; Derlin K; Kuczyk MA; von Klot CAJ; Christiansen H; Henkenberens C
    Strahlenther Onkol; 2019 May; 195(5):420-429. PubMed ID: 30610354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PSA-Net: Deep learning-based physician style-aware segmentation network for postoperative prostate cancer clinical target volumes.
    Balagopal A; Morgan H; Dohopolski M; Timmerman R; Shan J; Heitjan DF; Liu W; Nguyen D; Hannan R; Garant A; Desai N; Jiang S
    Artif Intell Med; 2021 Nov; 121():102195. PubMed ID: 34763810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and evaluation of a deep learning based artificial intelligence for automatic identification of gold fiducial markers in an MRI-only prostate radiotherapy workflow.
    Gustafsson CJ; Swärd J; Adalbjörnsson SI; Jakobsson A; Olsson LE
    Phys Med Biol; 2020 Nov; 65(22):225011. PubMed ID: 33179610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.
    Otálora S; Marini N; Müller H; Atzori M
    BMC Med Imaging; 2021 May; 21(1):77. PubMed ID: 33964886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust contour propagation using deep learning and image registration for online adaptive proton therapy of prostate cancer.
    Elmahdy MS; Jagt T; Zinkstok RT; Qiao Y; Shahzad R; Sokooti H; Yousefi S; Incrocci L; Marijnen CAM; Hoogeman M; Staring M
    Med Phys; 2019 Aug; 46(8):3329-3343. PubMed ID: 31111962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic radiotherapy delineation quality assurance on prostate MRI with deep learning in a multicentre clinical trial.
    Min H; Dowling J; Jameson MG; Cloak K; Faustino J; Sidhom M; Martin J; Ebert MA; Haworth A; Chlap P; de Leon J; Berry M; Pryor D; Greer P; Vinod SK; Holloway L
    Phys Med Biol; 2021 Sep; 66(19):. PubMed ID: 34507305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postoperative radiotherapy in prostate cancer: the case of the missing target.
    Croke J; Malone S; Roustan Delatour N; Belanger E; Avruch L; Morash C; Kayser C; Underhill K; Spaans J
    Int J Radiat Oncol Biol Phys; 2012 Jul; 83(4):1160-8. PubMed ID: 22270169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast interactive medical image segmentation with weakly supervised deep learning method.
    Girum KB; Créhange G; Hussain R; Lalande A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1437-1444. PubMed ID: 32653985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based synthetic CT generation for MR-only radiotherapy of prostate cancer patients with 0.35T MRI linear accelerator.
    Farjam R; Nagar H; Kathy Zhou X; Ouellette D; Chiara Formenti S; DeWyngaert JK
    J Appl Clin Med Phys; 2021 Aug; 22(8):93-104. PubMed ID: 34184390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A feature alignment score for online cone-beam CT-based image-guided radiotherapy for prostate cancer.
    Hargrave C; Deegan T; Poulsen M; Bednarz T; Harden F; Mengersen K
    Med Phys; 2018 Jul; 45(7):2898-2911. PubMed ID: 29772077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Patient positioning using in-room kV CT for image-guided radiotherapy (IGRT) of prostate cancer].
    Kliton J; Agoston P; Major T; Polgár C
    Magy Onkol; 2012 Sep; 56(3):193-8. PubMed ID: 23008828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical target volume delineation quality assurance for MRI-guided prostate radiotherapy using deep learning with uncertainty estimation.
    Min H; Dowling J; Jameson MG; Cloak K; Faustino J; Sidhom M; Martin J; Cardoso M; Ebert MA; Haworth A; Chlap P; de Leon J; Berry M; Pryor D; Greer P; Vinod SK; Holloway L
    Radiother Oncol; 2023 Sep; 186():109794. PubMed ID: 37414257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning.
    Li X; Zhang J; Sheng Y; Chang Y; Yin FF; Ge Y; Wu QJ; Wang C
    Phys Med Biol; 2020 Sep; 65(17):175014. PubMed ID: 32663813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.