These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34623861)

  • 1. Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression.
    Kandala A; Wei KX; Srinivasan S; Magesan E; Carnevale S; Keefe GA; Klaus D; Dial O; McKay DC
    Phys Rev Lett; 2021 Sep; 127(13):130501. PubMed ID: 34623861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Contrast ZZ Interaction Using Superconducting Qubits with Opposite-Sign Anharmonicity.
    Zhao P; Xu P; Lan D; Chu J; Tan X; Yu H; Yu Y
    Phys Rev Lett; 2020 Nov; 125(20):200503. PubMed ID: 33258656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hardware-Efficient Microwave-Activated Tunable Coupling between Superconducting Qubits.
    Mitchell BK; Naik RK; Morvan A; Hashim A; Kreikebaum JM; Marinelli B; Lavrijsen W; Nowrouzi K; Santiago DI; Siddiqi I
    Phys Rev Lett; 2021 Nov; 127(20):200502. PubMed ID: 34860047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hamiltonian Engineering with Multicolor Drives for Fast Entangling Gates and Quantum Crosstalk Cancellation.
    Wei KX; Magesan E; Lauer I; Srinivasan S; Bogorin DF; Carnevale S; Keefe GA; Kim Y; Klaus D; Landers W; Sundaresan N; Wang C; Zhang EJ; Steffen M; Dial OE; McKay DC; Kandala A
    Phys Rev Lett; 2022 Aug; 129(6):060501. PubMed ID: 36018659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Spectators on a Two-Qubit Gate in a Tunable Coupling Superconducting Circuit.
    Cai TQ; Han XY; Wu YK; Ma YL; Wang JH; Wang ZL; Zhang HY; Wang HY; Song YP; Duan LM
    Phys Rev Lett; 2021 Aug; 127(6):060505. PubMed ID: 34420337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-qubit logic gate in silicon.
    Veldhorst M; Yang CH; Hwang JC; Huang W; Dehollain JP; Muhonen JT; Simmons S; Laucht A; Hudson FE; Itoh KM; Morello A; Dzurak AS
    Nature; 2015 Oct; 526(7573):410-4. PubMed ID: 26436453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gatemon Benchmarking and Two-Qubit Operations.
    Casparis L; Larsen TW; Olsen MS; Kuemmeth F; Krogstrup P; Nygård J; Petersson KD; Marcus CM
    Phys Rev Lett; 2016 Apr; 116(15):150505. PubMed ID: 27127949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of Conditional Phase Gates Based on Tunable ZZ Interactions.
    Collodo MC; Herrmann J; Lacroix N; Andersen CK; Remm A; Lazar S; Besse JC; Walter T; Wallraff A; Eichler C
    Phys Rev Lett; 2020 Dec; 125(24):240502. PubMed ID: 33412023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance superconducting quantum processors via laser annealing of transmon qubits.
    Zhang EJ; Srinivasan S; Sundaresan N; Bogorin DF; Martin Y; Hertzberg JB; Timmerwilke J; Pritchett EJ; Yau JB; Wang C; Landers W; Lewandowski EP; Narasgond A; Rosenblatt S; Keefe GA; Lauer I; Rothwell MB; McClure DT; Dial OE; Orcutt JS; Brink M; Chow JM
    Sci Adv; 2022 May; 8(19):eabi6690. PubMed ID: 35559683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Fidelity, High-Scalability Two-Qubit Gate Scheme for Superconducting Qubits.
    Xu Y; Chu J; Yuan J; Qiu J; Zhou Y; Zhang L; Tan X; Yu Y; Liu S; Li J; Yan F; Yu D
    Phys Rev Lett; 2020 Dec; 125(24):240503. PubMed ID: 33412065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable Method for Eliminating Residual ZZ Interaction between Superconducting Qubits.
    Ni Z; Li S; Zhang L; Chu J; Niu J; Yan T; Deng X; Hu L; Li J; Zhong Y; Liu S; Yan F; Xu Y; Yu D
    Phys Rev Lett; 2022 Jul; 129(4):040502. PubMed ID: 35938995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of Unwanted ZZ Interactions in a Hybrid Two-Qubit System.
    Ku J; Xu X; Brink M; McKay DC; Hertzberg JB; Ansari MH; Plourde BLT
    Phys Rev Lett; 2020 Nov; 125(20):200504. PubMed ID: 33258640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CNOT gate between multiphoton qubits encoded in two cavities.
    Rosenblum S; Gao YY; Reinhold P; Wang C; Axline CJ; Frunzio L; Girvin SM; Jiang L; Mirrahimi M; Devoret MH; Schoelkopf RJ
    Nat Commun; 2018 Feb; 9(1):652. PubMed ID: 29440766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonantly driven CNOT gate for electron spins.
    Zajac DM; Sigillito AJ; Russ M; Borjans F; Taylor JM; Burkard G; Petta JR
    Science; 2018 Jan; 359(6374):439-442. PubMed ID: 29217586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Coupling Architecture for Fixed-Frequency Transmon Superconducting Qubits.
    Stehlik J; Zajac DM; Underwood DL; Phung T; Blair J; Carnevale S; Klaus D; Keefe GA; Carniol A; Kumph M; Steffen M; Dial OE
    Phys Rev Lett; 2021 Aug; 127(8):080505. PubMed ID: 34477428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qubit Architecture with High Coherence and Fast Tunable Coupling.
    Chen Y; Neill C; Roushan P; Leung N; Fang M; Barends R; Kelly J; Campbell B; Chen Z; Chiaro B; Dunsworth A; Jeffrey E; Megrant A; Mutus JY; O'Malley PJ; Quintana CM; Sank D; Vainsencher A; Wenner J; White TC; Geller MR; Cleland AN; Martinis JM
    Phys Rev Lett; 2014 Nov; 113(22):220502. PubMed ID: 25494061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of universal parametric entangling gates on a multi-qubit lattice.
    Reagor M; Osborn CB; Tezak N; Staley A; Prawiroatmodjo G; Scheer M; Alidoust N; Sete EA; Didier N; da Silva MP; Acala E; Angeles J; Bestwick A; Block M; Bloom B; Bradley A; Bui C; Caldwell S; Capelluto L; Chilcott R; Cordova J; Crossman G; Curtis M; Deshpande S; El Bouayadi T; Girshovich D; Hong S; Hudson A; Karalekas P; Kuang K; Lenihan M; Manenti R; Manning T; Marshall J; Mohan Y; O'Brien W; Otterbach J; Papageorge A; Paquette JP; Pelstring M; Polloreno A; Rawat V; Ryan CA; Renzas R; Rubin N; Russel D; Rust M; Scarabelli D; Selvanayagam M; Sinclair R; Smith R; Suska M; To TW; Vahidpour M; Vodrahalli N; Whyland T; Yadav K; Zeng W; Rigetti CT
    Sci Adv; 2018 Feb; 4(2):eaao3603. PubMed ID: 29423443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of an all-optical quantum controlled-NOT gate.
    O'Brien JL; Pryde GJ; White AG; Ralph TC; Branning D
    Nature; 2003 Nov; 426(6964):264-7. PubMed ID: 14628045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fidelity benchmarks for two-qubit gates in silicon.
    Huang W; Yang CH; Chan KW; Tanttu T; Hensen B; Leon RCC; Fogarty MA; Hwang JCC; Hudson FE; Itoh KM; Morello A; Laucht A; Dzurak AS
    Nature; 2019 May; 569(7757):532-536. PubMed ID: 31086337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Qubit Randomized Benchmarking.
    McKay DC; Sheldon S; Smolin JA; Chow JM; Gambetta JM
    Phys Rev Lett; 2019 May; 122(20):200502. PubMed ID: 31172740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.