These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34624013)

  • 1. Segmentation-Less, Automated, Vascular Vectorization.
    Mihelic SA; Sikora WA; Hassan AM; Williamson MR; Jones TA; Dunn AK
    PLoS Comput Biol; 2021 Oct; 17(10):e1009451. PubMed ID: 34624013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vectorization of optically sectioned brain microvasculature: learning aids completion of vascular graphs by connecting gaps and deleting open-ended segments.
    Kaufhold JP; Tsai PS; Blinder P; Kleinfeld D
    Med Image Anal; 2012 Aug; 16(6):1241-58. PubMed ID: 22854035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models.
    Lu P; Xia J; Li Z; Xiong J; Yang J; Zhou S; Wang L; Chen M; Wang C
    Biomed Eng Online; 2016 Nov; 15(1):120. PubMed ID: 27825346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.
    Mathew B; Schmitz A; Muñoz-Descalzo S; Ansari N; Pampaloni F; Stelzer EH; Fischer SC
    BMC Bioinformatics; 2015 Jun; 16():187. PubMed ID: 26049713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FogBank: a single cell segmentation across multiple cell lines and image modalities.
    Chalfoun J; Majurski M; Dima A; Stuelten C; Peskin A; Brady M
    BMC Bioinformatics; 2014 Dec; 15(1):431. PubMed ID: 25547324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Assessment of Hemodynamics in the Conjunctival Microvasculature Network.
    Khansari MM; Wanek J; Felder AE; Camardo N; Shahidi M
    IEEE Trans Med Imaging; 2016 Feb; 35(2):605-11. PubMed ID: 26452274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations.
    Liu H; Zhuang Y; Song E; Xu X; Ma G; Cetinkaya C; Hung CC
    Med Phys; 2023 Sep; 50(9):5460-5478. PubMed ID: 36864700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Automatic initialization and segmentation of left and right ventricles for large-scale cardiac MRI using a deeply supervised network and 3D-ASM.
    Hu H; Pan N; Frangi AF
    Comput Methods Programs Biomed; 2023 Oct; 240():107679. PubMed ID: 37364366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging.
    Agner SC; Xu J; Madabhushi A
    Med Phys; 2013 Mar; 40(3):032305. PubMed ID: 23464337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RSAtrace3D: robust vectorization software for measuring monocot root system architecture.
    Teramoto S; Tanabata T; Uga Y
    BMC Plant Biol; 2021 Aug; 21(1):398. PubMed ID: 34433428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation and Quantitative Analysis of Apoptosis of Chinese Hamster Ovary Cells from Fluorescence Microscopy Images.
    Du Y; Budman HM; Duever TA
    Microsc Microanal; 2017 Jun; 23(3):569-583. PubMed ID: 28367787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated segmentation of lesions and organs at risk on [
    Yazdani E; Karamzadeh-Ziarati N; Cheshmi SS; Sadeghi M; Geramifar P; Vosoughi H; Jahromi MK; Kheradpisheh SR
    Cancer Imaging; 2024 Feb; 24(1):30. PubMed ID: 38424612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CP-CHARM: segmentation-free image classification made accessible.
    Uhlmann V; Singh S; Carpenter AE
    BMC Bioinformatics; 2016 Jan; 17():51. PubMed ID: 26817459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate liver vessel segmentation via active contour model with dense vessel candidates.
    Chung M; Lee J; Chung JW; Shin YG
    Comput Methods Programs Biomed; 2018 Nov; 166():61-75. PubMed ID: 30415719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.