These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34624014)

  • 1. Engineering gene overlaps to sustain genetic constructs in vivo.
    Decrulle AL; Frénoy A; Meiller-Legrand TA; Bernheim A; Lotton C; Gutierrez A; Lindner AB
    PLoS Comput Biol; 2021 Oct; 17(10):e1009475. PubMed ID: 34624014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recoded organisms engineered to depend on synthetic amino acids.
    Rovner AJ; Haimovich AD; Katz SR; Li Z; Grome MW; Gassaway BM; Amiram M; Patel JR; Gallagher RR; Rinehart J; Isaacs FJ
    Nature; 2015 Feb; 518(7537):89-93. PubMed ID: 25607356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolonging genetic circuit stability through adaptive evolution of overlapping genes.
    Chlebek JL; Leonard SP; Kang-Yun C; Yung MC; Ricci DP; Jiao Y; Park DM
    Nucleic Acids Res; 2023 Jul; 51(13):7094-7108. PubMed ID: 37260076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rationally designed bidirectional promoter improves the evolutionary stability of synthetic genetic circuits.
    Yang S; Sleight SC; Sauro HM
    Nucleic Acids Res; 2013 Jan; 41(1):e33. PubMed ID: 23093602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocontainment of genetically modified organisms by synthetic protein design.
    Mandell DJ; Lajoie MJ; Mee MT; Takeuchi R; Kuznetsov G; Norville JE; Gregg CJ; Stoddard BL; Church GM
    Nature; 2015 Feb; 518(7537):55-60. PubMed ID: 25607366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of gene overlaps: relative reading frame bias in prokaryotic two-component system genes.
    Cock PJ; Whitworth DE
    J Mol Evol; 2007 Apr; 64(4):457-62. PubMed ID: 17479344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic sequence entanglement augments stability and containment of genetic information in cells.
    Blazejewski T; Ho HI; Wang HH
    Science; 2019 Aug; 365(6453):595-598. PubMed ID: 31395784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology.
    Borkowski O; Ceroni F; Stan GB; Ellis T
    Curr Opin Microbiol; 2016 Oct; 33():123-130. PubMed ID: 27494248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits.
    Sleight SC; Sauro HM
    ACS Synth Biol; 2013 Sep; 2(9):519-28. PubMed ID: 24004180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of synthetic gene circuits in the Escherichia coli genome.
    Ying BW; Akeno Y; Yomo T
    Methods Mol Biol; 2013; 1073():157-68. PubMed ID: 23996446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse Engineering in Biotechnology: The Role of Genetic Engineering in Synthetic Biology.
    Bijukumar G; Somvanshi PR
    Methods Mol Biol; 2024; 2719():307-324. PubMed ID: 37803125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encryption and steganography of synthetic gene circuits.
    Purcell O; Wang J; Siuti P; Lu TK
    Nat Commun; 2018 Nov; 9(1):4942. PubMed ID: 30467337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to build a genome.
    Eisenstein M
    Nature; 2020 Feb; 578(7796):633-635. PubMed ID: 32094921
    [No Abstract]   [Full Text] [Related]  

  • 14. The AssemblX Toolkit for Reliable and User-Friendly Multigene Assemblies.
    Machens F; Hochrein L
    Methods Mol Biol; 2020; 2205():49-67. PubMed ID: 32809192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic switchboard for synthetic biology applications.
    Callura JM; Cantor CR; Collins JJ
    Proc Natl Acad Sci U S A; 2012 Apr; 109(15):5850-5. PubMed ID: 22454498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality.
    Venetz JE; Del Medico L; Wölfle A; Schächle P; Bucher Y; Appert D; Tschan F; Flores-Tinoco CE; van Kooten M; Guennoun R; Deutsch S; Christen M; Christen B
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):8070-8079. PubMed ID: 30936302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spinach RNA aptamer as a characterization tool for synthetic biology.
    Pothoulakis G; Ceroni F; Reeve B; Ellis T
    ACS Synth Biol; 2014 Mar; 3(3):182-7. PubMed ID: 23991760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway.
    Agapakis CM; Silver PA
    Bioeng Bugs; 2010; 1(6):413-8. PubMed ID: 21468209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells.
    Rodrigo G; Landrain TE; Jaramillo A
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15271-6. PubMed ID: 22949707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addressing biological uncertainties in engineering gene circuits.
    Zhang C; Tsoi R; You L
    Integr Biol (Camb); 2016 Apr; 8(4):456-64. PubMed ID: 26674800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.