These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34624293)

  • 1. Transport and Lymphatic Uptake of Biotherapeutics Through Subcutaneous Injection.
    Han D; Rahimi E; Aramideh S; Ardekani AM
    J Pharm Sci; 2022 Mar; 111(3):752-768. PubMed ID: 34624293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymphatic uptake of biotherapeutics through a 3D hybrid discrete-continuum vessel network in the skin tissue.
    Han D; Li C; Araimdeh S; Sree V; Rahimi E; Buganza Tepole A; Ardekani AM
    J Control Release; 2023 Feb; 354():869-888. PubMed ID: 36634711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MPET
    Wang H; Hu T; Leng Y; de Lucio M; Gomez H
    Drug Deliv; 2023 Dec; 30(1):2163003. PubMed ID: 36625437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and lymphatic uptake of monoclonal antibodies after subcutaneous injection.
    Rahimi E; Aramideh S; Han D; Gomez H; Ardekani AM
    Microvasc Res; 2022 Jan; 139():104228. PubMed ID: 34547346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphysics Modeling and Simulation of Subcutaneous Injection and Absorption of Biotherapeutics: Model Development.
    Zheng F; Hou P; Corpstein CD; Xing L; Li T
    Pharm Res; 2021 Apr; 38(4):607-624. PubMed ID: 33811278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-scale numerical study of monoclonal antibodies uptake by initial lymphatics after subcutaneous injection.
    Li C; Zhong X; Rahimi E; Ardekani AM
    Int J Pharm; 2024 Jul; ():124419. PubMed ID: 38972522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and distribution of biotherapeutics in different tissue layers after subcutaneous injection.
    Rahimi E; Gomez H; Ardekani AM
    Int J Pharm; 2022 Oct; 626():122125. PubMed ID: 35988855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling uptake and transport of therapeutic agents through the lymphatic system.
    Jayathungage Don TD; Suresh V; Cater JE; Clarke RJ
    Comput Methods Biomech Biomed Engin; 2022 Jun; 25(8):861-874. PubMed ID: 34592851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on enhanced lymphatic tracing of isosulfan blue injection by influence of osmotic pressure on lymphatic exposure.
    Ye T; He R; Wu Y; Shang L; Wang S
    Drug Dev Ind Pharm; 2018 Apr; 44(4):535-543. PubMed ID: 29141490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical studies of the lymphatic uptake rate.
    Li C; Zhong X; Ardekani AM
    Comput Biol Med; 2023 Oct; 165():107380. PubMed ID: 37634464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solute Transport across the Lymphatic Vasculature in a Soft Skin Tissue.
    Han D; Huang Z; Rahimi E; Ardekani AM
    Biology (Basel); 2023 Jun; 12(7):. PubMed ID: 37508373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lymphatic transport of proteins after subcutaneous administration.
    Porter CJ; Charman SA
    J Pharm Sci; 2000 Mar; 89(3):297-310. PubMed ID: 10707011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphysics Modeling and Simulation of Subcutaneous Injection and Absorption of Biotherapeutics: Sensitivity Analysis.
    Hou P; Zheng F; Corpstein CD; Xing L; Li T
    Pharm Res; 2021 Jun; 38(6):1011-1030. PubMed ID: 34080101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling drug transport and absorption in subcutaneous injection of monoclonal antibodies: Impact of tissue deformation, devices, and physiology.
    de Lucio M; Leng Y; Wang H; Vlachos PP; Gomez H
    Int J Pharm; 2024 Jul; ():124446. PubMed ID: 38996825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing the Bioavailability of Subcutaneously Administered Biotherapeutics Through Mechanochemical Drivers.
    Collins DS; Kourtis LC; Thyagarajapuram NR; Sirkar R; Kapur S; Harrison MW; Bryan DJ; Jones GB; Wright JM
    Pharm Res; 2017 Oct; 34(10):2000-2011. PubMed ID: 28707164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Density Lipoprotein Composition Influences Lymphatic Transport after Subcutaneous Administration.
    Gracia G; Cao E; Feeney OM; Johnston APR; Porter CJH; Trevaskis NL
    Mol Pharm; 2020 Aug; 17(8):2938-2951. PubMed ID: 32543863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed-dimensional multi-scale poroelastic modeling of adipose tissue for subcutaneous injection.
    Leng Y; Wang H; de Lucio M; Gomez H
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1825-1840. PubMed ID: 36057050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymphatic transport and catabolism of therapeutic proteins after subcutaneous administration to rats and dogs.
    Wang W; Chen N; Shen X; Cunningham P; Fauty S; Michel K; Wang B; Hong X; Adreani C; Nunes CN; Johnson CV; Yin KC; Groff M; Zou Y; Liu L; Hamuro L; Prueksaritanont T
    Drug Metab Dispos; 2012 May; 40(5):952-62. PubMed ID: 22328584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Drug Absorption from the Dermis after an Injection.
    Li Z; Biswas A; Finkelstein J; Grein S; Kapoor Y; Milewski M; Queisser G
    J Pharm Sci; 2021 Mar; 110(3):1279-1291.e1. PubMed ID: 33248056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEGylation does not significantly change the initial intravenous or subcutaneous pharmacokinetics or lymphatic exposure of trastuzumab in rats but increases plasma clearance after subcutaneous administration.
    Chan LJ; Bulitta JB; Ascher DB; Haynes JM; McLeod VM; Porter CJ; Williams CC; Kaminskas LM
    Mol Pharm; 2015 Mar; 12(3):794-809. PubMed ID: 25644368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.