These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34624306)

  • 1. Impact of small fractions of abnormal erythrocytes on blood rheology.
    Kuck L; McNamee AP; Simmonds MJ
    Microvasc Res; 2022 Jan; 139():104261. PubMed ID: 34624306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition.
    Renoux C; Faivre M; Bessaa A; Da Costa L; Joly P; Gauthier A; Connes P
    Sci Rep; 2019 May; 9(1):6771. PubMed ID: 31043643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of superoxide anions on red blood cell rheologic properties.
    Baskurt OK; Temiz A; Meiselman HJ
    Free Radic Biol Med; 1998 Jan; 24(1):102-10. PubMed ID: 9436619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia.
    Cabrales P
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1206-15. PubMed ID: 17449555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular determinants of low-shear blood viscosity.
    Baskurt OK; Meiselman HJ
    Biorheology; 1997; 34(3):235-47. PubMed ID: 9474265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte oxidative stress is associated with cell deformability in patients with retinal vein occlusion.
    Becatti M; Marcucci R; Gori AM; Mannini L; Grifoni E; Alessandrello Liotta A; Sodi A; Tartaro R; Taddei N; Rizzo S; Prisco D; Abbate R; Fiorillo C
    J Thromb Haemost; 2016 Nov; 14(11):2287-2297. PubMed ID: 27557753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood Rheology and Hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2024 Sep; 50(6):902-915. PubMed ID: 38122808
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxidative Stress Increases Erythrocyte Sensitivity to Shear-Mediated Damage.
    McNamee AP; Horobin JT; Tansley GD; Simmonds MJ
    Artif Organs; 2018 Feb; 42(2):184-192. PubMed ID: 28877350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N; Riha P; Ivanov I; Gluhcheva Y
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sublethal mechanical shear stress increases the elastic shear modulus of red blood cells but does not change capillary transit velocity.
    McNamee AP; Tansley GD; Simmonds MJ
    Microcirculation; 2020 Nov; 27(8):e12652. PubMed ID: 32738159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of inositol hexaphosphate-loaded red blood cells (RBCs) on the rheology of sickle RBCs.
    Lamarre Y; Bourgeaux V; Pichon A; Hardeman MR; Campion Y; Hardeman-Zijp M; Martin C; Richalet JP; Bernaudin F; Driss F; Godfrin Y; Connes P
    Transfusion; 2013 Mar; 53(3):627-36. PubMed ID: 22804873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biphasic impairment of erythrocyte deformability in response to repeated, short duration exposures of supraphysiological, subhaemolytic shear stress.
    McNamee AP; Tansley GD; Sabapathy S; Simmonds MJ
    Biorheology; 2016 Nov; 53(3-4):137-149. PubMed ID: 27662271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells.
    Kwan JM; Guo Q; Kyluik-Price DL; Ma H; Scott MD
    Am J Hematol; 2013 Aug; 88(8):682-9. PubMed ID: 23674388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphologic and internal viscosity aspects of RBC rheologic behavior.
    Pfafferott C; Wenby R; Meiselman HJ
    Blood Cells; 1982; 8(1):65-78. PubMed ID: 7115979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of oxidant susceptibility of red blood cells in various species based on cell deformability.
    Simmonds MJ; Meiselman HJ; Marshall-Gradisnik SM; Pyne M; Kakanis M; Keane J; Brenu E; Christy R; Baskurt OK
    Biorheology; 2011; 48(5):293-304. PubMed ID: 22433570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance.
    Robert M; Stauffer E; Nader E; Skinner S; Boisson C; Cibiel A; Feasson L; Renoux C; Robach P; Joly P; Millet GY; Connes P
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33198320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell tolerance to shear stress above and below the subhemolytic threshold.
    Horobin JT; Sabapathy S; Simmonds MJ
    Biomech Model Mechanobiol; 2020 Jun; 19(3):851-860. PubMed ID: 31720887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood banking-induced alteration of red blood cell flow properties.
    Relevy H; Koshkaryev A; Manny N; Yedgar S; Barshtein G
    Transfusion; 2008 Jan; 48(1):136-46. PubMed ID: 17900281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium/protein kinase C signaling mechanisms in shear-induced mechanical responses of red blood cells.
    Ugurel E; Kisakurek ZB; Aksu Y; Goksel E; Cilek N; Yalcin O
    Microvasc Res; 2021 May; 135():104124. PubMed ID: 33359148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.