These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34624307)

  • 1. Pulsatility damping in the microcirculation: Basic pattern and modulating factors.
    Pan Q; Feng W; Wang R; Tabuchi A; Li P; Nitzsche B; Fang L; Kuebler WM; Pries AR; Ning G
    Microvasc Res; 2022 Jan; 139():104259. PubMed ID: 34624307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.
    Pan Q; Wang R; Reglin B; Cai G; Yan J; Pries AR; Ning G
    J Biomech Eng; 2014 Jan; 136(1):011009. PubMed ID: 24190506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network.
    Wang R; Pan Q; Kuebler WM; Li JK; Pries AR; Ning G
    Microvasc Res; 2017 Sep; 113():40-49. PubMed ID: 28478072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of big endothelin-1 in comparison with endothelin-1 on the microvascular blood flow velocity and diameter of rat mesentery in vivo.
    Abdelhalim MA
    Microvasc Res; 2006 Nov; 72(3):108-12. PubMed ID: 17028040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of retinal arteriolar and venular variability in healthy subjects.
    Rose PA; Hudson C
    Microvasc Res; 2007 Jan; 73(1):35-8. PubMed ID: 17137608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age, sex, and the vascular contributors to cerebral pulsatility and pulsatile damping.
    Lefferts WK; DeBlois JP; Augustine JA; Keller AP; Heffernan KS
    J Appl Physiol (1985); 2020 Nov; 129(5):1092-1101. PubMed ID: 32940561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow pulsation and network structure in mesenteric microvasculature of rats.
    Seki J
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H811-21. PubMed ID: 8141382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of carpronium chloride on the microvascular blood flow in rat mesentery using intravital videomicroscopy.
    Minamiyama M; Minato T; Yamamoto A; Kaihatsu T; Tsunoda K
    Clin Hemorheol Microcirc; 2006; 34(1-2):125-9. PubMed ID: 16543627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rate of O₂ loss from mesenteric arterioles is not unusually high.
    Golub AS; Song BK; Pittman RN
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H737-45. PubMed ID: 21685269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distribution of blood rheological parameters in the microvasculature of cat mesentery.
    Lipowsky HH; Kovalcheck S; Zweifach BW
    Circ Res; 1978 Nov; 43(5):738-49. PubMed ID: 709740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial, not hemodynamic, differences are responsible for preferential leukocyte rolling in rat mesenteric venules.
    Ley K; Gaehtgens P
    Circ Res; 1991 Oct; 69(4):1034-41. PubMed ID: 1934331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design principles of vascular beds.
    Pries AR; Secomb TW; Gaehtgens P
    Circ Res; 1995 Nov; 77(5):1017-23. PubMed ID: 7554136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvascular adaptation--regulation, coordination and function.
    Pries AR; Secomb TW
    Z Kardiol; 2000; 89 Suppl 9():IX/117-20. PubMed ID: 11151780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal distribution of neurovascular alignment in remodeling adult rat mesentery microvascular networks.
    Stapor PC; Murfee WL
    J Vasc Res; 2012; 49(4):299-308. PubMed ID: 22538935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulse wave velocity in the microcirculation reflects both vascular compliance and resistance: Insights from computational approaches.
    Pan Q; Wang R; Reglin B; Fang L; Yan J; Cai G; Kuebler WM; Pries AR; Ning G
    Microcirculation; 2018 Jul; 25(5):e12458. PubMed ID: 29729094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arteriolar and venular vasodilating properties of benidipine hydrochloride, a 1,4-dihydropyridine Ca2+ antagonist with long-lasting action, assessed in rat mesenteric microcirculation.
    Nakayama K; Horikawa N; Ogawa T; Kohno F; Ishii K; Kubo K; Imabeppu S
    J Cardiovasc Pharmacol; 1999 Apr; 33(4):540-8. PubMed ID: 10218723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide measurements in rat mesentery reveal disrupted venulo-arteriolar communication in diabetes.
    Nellore K; Harris NR
    Microcirculation; 2004; 11(5):415-23. PubMed ID: 15280067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thromboembolic reaction following wall puncture in arterioles and venules of the rabbit mesentery.
    oude Egbrink MG; Tangelder GJ; Slaaf DW; Reneman RS
    Thromb Haemost; 1988 Feb; 59(1):23-8. PubMed ID: 3363530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach for studies of mediator-induced leukocyte rolling in the undisturbed microcirculation of the rat mesentery.
    Yamaki K; Lindbom L; Thorlacius H; Hedqvist P; Raud J
    Br J Pharmacol; 1998 Feb; 123(3):381-9. PubMed ID: 9504377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural adaptation and stability of microvascular networks: theory and simulations.
    Pries AR; Secomb TW; Gaehtgens P
    Am J Physiol; 1998 Aug; 275(2):H349-60. PubMed ID: 9683420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.