BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 34624441)

  • 1. 3D printing advances in the development of stents.
    Khalaj R; Tabriz AG; Okereke MI; Douroumis D
    Int J Pharm; 2021 Nov; 609():121153. PubMed ID: 34624441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing technology and its revolutionary role in stent implementation in cardiovascular disease.
    Khan MA; Khan N; Ullah M; Hamayun S; Makhmudov NI; Mbbs R; Safdar M; Bibi A; Wahab A; Naeem M; Hasan N
    Curr Probl Cardiol; 2024 Jun; 49(6):102568. PubMed ID: 38599562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing Toward 3D Printing of Bioresorbable Shape Memory Polymer Stents.
    Yeazel TR; Becker ML
    Biomacromolecules; 2020 Oct; 21(10):3957-3965. PubMed ID: 32924443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties.
    Sousa AM; Amaro AM; Piedade AP
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of three-dimensionally printed vascular stents of bioresorbable poly(l-lactide-co-caprolactone).
    Zhao J; Song G; Zhao Q; Feng H; Wang Y; Anderson JM; Zhao H; Liu Q
    J Biomed Mater Res B Appl Biomater; 2023 Mar; 111(3):656-664. PubMed ID: 36420745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional Printing and 3D Slicer: Powerful Tools in Understanding and Treating Structural Lung Disease.
    Cheng GZ; San Jose Estepar R; Folch E; Onieva J; Gangadharan S; Majid A
    Chest; 2016 May; 149(5):1136-42. PubMed ID: 26976347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications.
    Griffin M; Castro N; Bas O; Saifzadeh S; Butler P; Hutmacher DW
    Tissue Eng Part B Rev; 2020 Jun; 26(3):272-283. PubMed ID: 32089089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shaping the Future of Cardiovascular Disease by 3D Printing Applications in Stent Technology and its Clinical Outcomes.
    Ullah M; Bibi A; Wahab A; Hamayun S; Rehman MU; Khan SU; Awan UA; Riaz NU; Naeem M; Saeed S; Hussain T
    Curr Probl Cardiol; 2024 Jan; 49(1 Pt A):102039. PubMed ID: 37598773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital light 3D printing of customized bioresorbable airway stents with elastomeric properties.
    Paunović N; Bao Y; Coulter FB; Masania K; Geks AK; Klein K; Rafsanjani A; Cadalbert J; Kronen PW; Kleger N; Karol A; Luo Z; Rüber F; Brambilla D; von Rechenberg B; Franzen D; Studart AR; Leroux JC
    Sci Adv; 2021 Feb; 7(6):. PubMed ID: 33536222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of 3D printing in pediatric airway obstruction: A systematic review.
    Stramiello JA; Saddawi-Konefka R; Ryan J; Brigger MT
    Int J Pediatr Otorhinolaryngol; 2020 May; 132():109923. PubMed ID: 32035351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing for Bio-Synthetic Biliary Stents.
    Boyer CJ; Boktor M; Samant H; White LA; Wang Y; Ballard DH; Huebert RC; Woerner JE; Ghali GE; Alexander JS
    Bioengineering (Basel); 2019 Feb; 6(1):. PubMed ID: 30744131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties and degradation of drug eluted bioresorbable vascular scaffolds prepared by three-dimensional printing technology.
    Zhang Y; Zhao J; Yang G; Zhou Y; Gao W; Wu G; Li X; Mao C; Sheng T; Zhou M
    J Biomater Sci Polym Ed; 2019 May; 30(7):547-560. PubMed ID: 30897033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Printing of Drug-Eluting Implants: An Overview of the Current Developments Described in the Literature.
    Domsta V; Seidlitz A
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review.
    Athukorala SS; Tran TS; Balu R; Truong VK; Chapman J; Dutta NK; Roy Choudhury N
    Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical surface function-based design and 3D printing of airway stents.
    Yilmaz B; Kara BY
    3D Print Med; 2022 Aug; 8(1):24. PubMed ID: 35932364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of 3D Printing in Implantable Medical Devices.
    Wang Z; Yang Y
    Biomed Res Int; 2021; 2021():6653967. PubMed ID: 33521128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of 3D-printing technologies for wearable and implantable bio-integrated sensors.
    Rachim VP; Park SM
    Essays Biochem; 2021 Aug; 65(3):491-502. PubMed ID: 33860794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional 3D printing: Approaches and bioapplications.
    Palmara G; Frascella F; Roppolo I; Chiappone A; Chiadò A
    Biosens Bioelectron; 2021 Mar; 175():112849. PubMed ID: 33250333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.