These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34624589)

  • 1. A machine learning model to estimate ground-level ozone concentrations in California using TROPOMI data and high-resolution meteorology.
    Wang W; Liu X; Bi J; Liu Y
    Environ Int; 2022 Jan; 158():106917. PubMed ID: 34624589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning models accurately predict ozone exposure during wildfire events.
    Watson GL; Telesca D; Reid CE; Pfister GG; Jerrett M
    Environ Pollut; 2019 Nov; 254(Pt A):112792. PubMed ID: 31421571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-spatial resolution ground-level ozone in Yunnan, China: A spatiotemporal estimation based on comparative analyses of machine learning models.
    Man X; Liu R; Zhang Y; Yu W; Kong F; Liu L; Luo Y; Feng T
    Environ Res; 2024 Jun; 251(Pt 1):118609. PubMed ID: 38442812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separating emissions and meteorological impacts on peak ozone concentrations in Southern California using generalized additive modeling.
    Gao Z; Ivey CE; Blanchard CL; Do K; Lee SM; Russell AG
    Environ Pollut; 2022 Aug; 307():119503. PubMed ID: 35598815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of surface ozone concentration over Jiangsu province using a high-performance deep learning model.
    Mu X; Wang S; Jiang P; Wu Y
    J Environ Sci (China); 2023 Oct; 132():122-133. PubMed ID: 37336603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the spatiotemporal dynamic of ground-level ozone concentrations on multiple scales across China during the blue sky protection campaign.
    Guo B; Wu H; Pei L; Zhu X; Zhang D; Wang Y; Luo P
    Environ Int; 2022 Dec; 170():107606. PubMed ID: 36335896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the spatiotemporal ozone characteristics with high-resolution predictions in mainland China, 2013-2019.
    Meng X; Wang W; Shi S; Zhu S; Wang P; Chen R; Xiao Q; Xue T; Geng G; Zhang Q; Kan H; Zhang H
    Environ Pollut; 2022 Apr; 299():118865. PubMed ID: 35063542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States.
    Ren X; Mi Z; Georgopoulos PG
    Environ Int; 2020 Sep; 142():105827. PubMed ID: 32593834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of surface-level NO
    Kang Y; Choi H; Im J; Park S; Shin M; Song CK; Kim S
    Environ Pollut; 2021 Nov; 288():117711. PubMed ID: 34329053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TROPOspheric Monitoring Instrument observations of total column water vapour: Algorithm and validation.
    Chan KL; Xu J; Slijkhuis S; Valks P; Loyola D
    Sci Total Environ; 2022 May; 821():153232. PubMed ID: 35090926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term spatiotemporal variations in surface NO
    Zhao Z; Lu Y; Zhan Y; Cheng Y; Yang F; Brook JR; He K
    Sci Total Environ; 2023 Dec; 904():166693. PubMed ID: 37657553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground-based and OMI-TROPOMI NO
    Adame JA; Gutierrez-Alvarez I; Bolivar JP; Yela M
    Environ Pollut; 2020 Sep; 264():114771. PubMed ID: 32559866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neighborhood-scale ambient NO
    Lee HJ; Liu Y; Chatfield RB
    Sci Total Environ; 2023 Jan; 857(Pt 3):159342. PubMed ID: 36223808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the spatiotemporal variability and trends of surface ozone over India.
    Kunchala RK; Singh BB; Karumuri RK; Attada R; Seelanki V; Kumar KN
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):6219-6236. PubMed ID: 34448143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating spatiotemporal distribution of PM
    Chen G; Knibbs LD; Zhang W; Li S; Cao W; Guo J; Ren H; Wang B; Wang H; Williams G; Hamm NAS; Guo Y
    Environ Pollut; 2018 Feb; 233():1086-1094. PubMed ID: 29033176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach.
    Liu R; Ma Z; Liu Y; Shao Y; Zhao W; Bi J
    Environ Int; 2020 Sep; 142():105823. PubMed ID: 32521347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of high spatial resolution ground-level ozone concentrations based on Landsat 8 TIR bands with deep forest model.
    Li M; Yang Q; Yuan Q; Zhu L
    Chemosphere; 2022 Aug; 301():134817. PubMed ID: 35523298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daily ambient NO2 concentration predictions using satellite ozone monitoring instrument NO2 data and land use regression.
    Lee HJ; Koutrakis P
    Environ Sci Technol; 2014 Feb; 48(4):2305-11. PubMed ID: 24437539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urban ozone variability using automated machine learning: inference from different feature importance schemes.
    Nath SJ; Girach IA; Harithasree S; Bhuyan K; Ojha N; Kumar M
    Environ Monit Assess; 2024 Mar; 196(4):393. PubMed ID: 38520559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China.
    Zhao F; Liu C; Cai Z; Liu X; Bak J; Kim J; Hu Q; Xia C; Zhang C; Sun Y; Wang W; Liu J
    Sci Total Environ; 2021 Apr; 764():142886. PubMed ID: 33757247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.