These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34624663)

  • 81. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability.
    Xia D; Quan P; Piao H; Piao H; Sun S; Yin Y; Cui F
    Eur J Pharm Sci; 2010 Jul; 40(4):325-34. PubMed ID: 20417274
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Preparation of two-drug composite microparticles to improve the dissolution of insoluble drug in water for use with a 4-fluid nozzle spray drier.
    Ozeki T; Beppu S; Mizoe T; Takashima Y; Yuasa H; Okada H
    J Control Release; 2005 Oct; 107(3):387-94. PubMed ID: 16126298
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The effect of an ultrasonic spray nozzle on carbohydrate and protein-based coating materials for blueberry extract microencapsulation.
    Tatar Turan F; Kahyaoglu T
    J Sci Food Agric; 2021 Jan; 101(1):120-130. PubMed ID: 32613628
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion.
    Kakran M; Sahoo NG; Li L
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):121-30. PubMed ID: 21764266
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Production of salbutamol sulfate for inhalation by high-gravity controlled antisolvent precipitation.
    Chiou H; Li L; Hu T; Chan HK; Chen JF; Yun J
    Int J Pharm; 2007 Feb; 331(1):93-8. PubMed ID: 17052870
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability.
    Jain S; Reddy VA; Arora S; Patel K
    Drug Deliv Transl Res; 2016 Oct; 6(5):498-510. PubMed ID: 27129488
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid.
    Yu Z; Rogers TL; Hu J; Johnston KP; Williams RO
    Eur J Pharm Biopharm; 2002 Sep; 54(2):221-8. PubMed ID: 12191695
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Preparation and Pharmacokinetic Study of Daidzein Long-Circulating Liposomes.
    Wang Q; Liu W; Wang J; Liu H; Chen Y
    Nanoscale Res Lett; 2019 Oct; 14(1):321. PubMed ID: 31617108
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Enhanced bioavailability of cinnarizine nanosuspensions by particle size engineering: Optimization and physicochemical investigations.
    Mishra B; Sahoo J; Dixit PK
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():62-9. PubMed ID: 27040196
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Developing an environmentally benign process for the production of microparticles: amphiphilic crystallization.
    Murnane D; Marriott C; Martin GP
    Eur J Pharm Biopharm; 2008 May; 69(1):72-82. PubMed ID: 18082385
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Comparing various techniques to produce micro/nanoparticles for enhancing the dissolution of celecoxib containing PVP.
    Homayouni A; Sadeghi F; Varshosaz J; Garekani HA; Nokhodchi A
    Eur J Pharm Biopharm; 2014 Sep; 88(1):261-74. PubMed ID: 24952357
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Supercritical antisolvent precipitation of PHBV microparticles.
    Costa MS; Duarte AR; Cardoso MM; Duarte CM
    Int J Pharm; 2007 Jan; 328(1):72-7. PubMed ID: 16971075
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Rifampicin microparticles production by supercritical antisolvent precipitation.
    Reverchon E; De Marco I; Della Porta G
    Int J Pharm; 2002 Aug; 243(1-2):83-91. PubMed ID: 12176297
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent.
    Jia J; Wang W; Gao Y; Zhao Y
    Ultrason Sonochem; 2015 Nov; 27():389-394. PubMed ID: 26186858
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Preparation of Vitexin Nanoparticles by Combining the Antisolvent Precipitation and High Pressure Homogenization Approaches Followed by Lyophilization for Dissolution Rate Enhancement.
    Gu C; Liu Z; Yuan X; Li W; Zu Y; Fu Y
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29165376
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation.
    Dong Y; Ng WK; Shen S; Kim S; Tan RB
    Int J Pharm; 2009 Jun; 375(1-2):84-8. PubMed ID: 19481693
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.
    Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L
    Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Engineering the Morphology and Particle Size of High Energetic Compounds Using Drop-by-Drop and Drop-to-Drop Solvent-Antisolvent Interaction Methods.
    Kumar R; Soni P; Siril PF
    ACS Omega; 2019 Mar; 4(3):5424-5433. PubMed ID: 31459707
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS).
    Kang Y; Yin G; Ouyang P; Huang Z; Yao Y; Liao X; Chen A; Pu X
    J Colloid Interface Sci; 2008 Jun; 322(1):87-94. PubMed ID: 18402971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.