These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 34624725)

  • 21. Progress and perspectives on carbon-based materials for adsorptive removal and photocatalytic degradation of perfluoroalkyl and polyfluoroalkyl substances (PFAS).
    Dey D; Shafi T; Chowdhury S; Dubey BK; Sen R
    Chemosphere; 2024 Mar; 351():141164. PubMed ID: 38215829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Natural mineral and industrial solid waste-based adsorbent for perfluorooctanoic acid and perfluorooctane sulfonate removal from surface water: Advances and prospects.
    Chen S; Li B; Zhao R; Zhang B; Zhang Y; Chen J; Sun J; Ma X
    Chemosphere; 2024 Jun; ():142662. PubMed ID: 38936483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxicological evaluation of clay minerals and derived nanocomposites: a review.
    Maisanaba S; Pichardo S; Puerto M; Gutiérrez-Praena D; Cameán AM; Jos A
    Environ Res; 2015 Apr; 138():233-54. PubMed ID: 25732897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comprehensive review on sustainable clay-based geopolymers for wastewater treatment: circular economy and future outlook.
    Maged A; El-Fattah HA; Kamel RM; Kharbish S; Elgarahy AM
    Environ Monit Assess; 2023 May; 195(6):693. PubMed ID: 37204517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structured clay minerals-based nanomaterials for sustainable photo/thermal carbon dioxide conversion to cleaner fuels: A critical review.
    Fan WK; Tahir M
    Sci Total Environ; 2022 Nov; 845():157206. PubMed ID: 35810906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designing nanoarchitecture for environmental remediation based on the clay minerals as building block.
    Phuekphong AF; Imwiset KJ; Ogawa M
    J Hazard Mater; 2020 Nov; 399():122888. PubMed ID: 32937697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption, Structure, and Dynamics of Short- and Long-Chain PFAS Molecules in Kaolinite: Molecular-Level Insights.
    Loganathan N; Wilson AK
    Environ Sci Technol; 2022 Jun; 56(12):8043-8052. PubMed ID: 35543620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in clay minerals for groundwater pollution control and remediation.
    Hu S; Liu Y; Wei L; Luo D; Wu Q; Huang X; Xiao T
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):24724-24744. PubMed ID: 38503955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays.
    Sánchez-Martín MJ; Dorado MC; del Hoyo C; Rodríguez-Cruz MS
    J Hazard Mater; 2008 Jan; 150(1):115-23. PubMed ID: 17532126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review.
    Momina ; Shahadat M; Isamil S
    RSC Adv; 2018 Jul; 8(43):24571-24587. PubMed ID: 35539168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption behaviour of pollutants: Heavy metals, radionuclides, organic pollutants, on clays and their minerals (raw, modified and treated): A review.
    Novikau R; Lujaniene G
    J Environ Manage; 2022 May; 309():114685. PubMed ID: 35151139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating the number of airports potentially contaminated with perfluoroalkyl and polyfluoroalkyl substances from aqueous film forming foam: A Canadian example.
    Milley SA; Koch I; Fortin P; Archer J; Reynolds D; Weber KP
    J Environ Manage; 2018 Sep; 222():122-131. PubMed ID: 29807261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties and Mechanisms for PFAS Adsorption to Aqueous Clay and Humic Soil Components.
    Luft CM; Schutt TC; Shukla MK
    Environ Sci Technol; 2022 Jul; 56(14):10053-10061. PubMed ID: 35763709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial biomodification of clay minerals.
    Zhang L; Gadd GM; Li Z
    Adv Appl Microbiol; 2021; 114():111-139. PubMed ID: 33934851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous removal of multiple pesticides from water: effect of organically modified clays as coagulant aid and adsorbent in coagulation-flocculation process.
    Shabeer TP; Saha A; Gajbhiye VT; Gupta S; Manjaiah KM; Varghese E
    Environ Technol; 2014; 35(17-20):2619-27. PubMed ID: 25145219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization and adsorption applications of composite biochars of clay minerals and biomass.
    Gao L; Goldfarb JL
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):44277-44287. PubMed ID: 33851292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media.
    Premarathna KSD; Rajapaksha AU; Adassoriya N; Sarkar B; Sirimuthu NMS; Cooray A; Ok YS; Vithanage M
    J Environ Manage; 2019 May; 238():315-322. PubMed ID: 30852408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review.
    Zhang W; Zhang D; Liang Y
    Environ Pollut; 2019 Apr; 247():266-276. PubMed ID: 30685667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clay-polymer nanocomposites: Progress and challenges for use in sustainable water treatment.
    Mukhopadhyay R; Bhaduri D; Sarkar B; Rusmin R; Hou D; Khanam R; Sarkar S; Kumar Biswas J; Vithanage M; Bhatnagar A; Ok YS
    J Hazard Mater; 2020 Feb; 383():121125. PubMed ID: 31541959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clay based nanocomposites for removal of heavy metals from water: A review.
    Yadav VB; Gadi R; Kalra S
    J Environ Manage; 2019 Feb; 232():803-817. PubMed ID: 30529868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.