These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 34624725)

  • 41. Comprehensive Review on the Interactions of Clay Minerals With Animal Physiology and Production.
    Damato A; Vianello F; Novelli E; Balzan S; Gianesella M; Giaretta E; Gabai G
    Front Vet Sci; 2022; 9():889612. PubMed ID: 35619608
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transformation and toxicity of environmental contaminants as influenced by Fe containing clay minerals: a review.
    Wang Y; Jin X; Peng A; Gu C
    Bull Environ Contam Toxicol; 2020 Jan; 104(1):8-14. PubMed ID: 31740979
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review.
    Barakan S; Aghazadeh V
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):2572-2599. PubMed ID: 33113058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Addressing Short-Chain PFAS Contamination in Water with Nanofibrous Adsorbent/Filter Material from Electrospinning.
    Mantripragada S; Obare SO; Zhang L
    Acc Chem Res; 2023 Jun; 56(11):1271-1278. PubMed ID: 36633899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A review of the emerging treatment technologies for PFAS contaminated soils.
    Mahinroosta R; Senevirathna L
    J Environ Manage; 2020 Feb; 255():109896. PubMed ID: 32063301
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Occurrence and removal of poly/perfluoroalkyl substances (PFAS) in municipal and industrial wastewater treatment plants.
    Barisci S; Suri R
    Water Sci Technol; 2021 Dec; 84(12):3442-3468. PubMed ID: 34928819
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA).
    Ehsan MN; Riza M; Pervez MN; Khyum MMO; Liang Y; Naddeo V
    Sci Total Environ; 2023 Jun; 878():163123. PubMed ID: 37001657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling the adsorption of mercury onto natural and aluminium pillared clays.
    Eloussaief M; Sdiri A; Benzina M
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):469-79. PubMed ID: 22532118
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices.
    Wu C; Klemes MJ; Trang B; Dichtel WR; Helbling DE
    Water Res; 2020 Sep; 182():115950. PubMed ID: 32604026
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reversible adsorption and desorption of PFAS on inexpensive graphite adsorbents
    Shrestha B; Ezazi M; Ajayan S; Kwon G
    RSC Adv; 2021 Oct; 11(55):34652-34659. PubMed ID: 35494755
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PFAS and their substitutes in groundwater: Occurrence, transformation and remediation.
    Xu B; Liu S; Zhou JL; Zheng C; Weifeng J; Chen B; Zhang T; Qiu W
    J Hazard Mater; 2021 Jun; 412():125159. PubMed ID: 33951855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of Cd, Cu and Zn ions from aqueous solutions using natural and Fe modified sepiolite, zeolite and palygorskite clay minerals.
    Bahabadi FN; Farpoor MH; Mehrizi MH
    Water Sci Technol; 2017 Jan; 75(2):340-349. PubMed ID: 28112661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigating the Electrochemically Driven Capture and Release of Long-Chain PFAS by Redox Metallopolymer Sorbents.
    Baldaguez Medina P; Ardila Contreras V; Hartmann F; Schmitt D; Klimek A; Elbert J; Gallei M; Su X
    ACS Appl Mater Interfaces; 2023 May; 15(18):22112-22122. PubMed ID: 37114898
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PFAS adsorbent selection: The role of adsorbent use rate, water quality, and cost.
    Murray CC; Safulko A; Vatankhah H; Liu CJ; Tajdini B; Marshall RE; Bellona C
    J Hazard Mater; 2023 Jul; 454():131481. PubMed ID: 37146339
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals.
    Zhuang J; Yu GR
    Chemosphere; 2002 Nov; 49(6):619-28. PubMed ID: 12430649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. XGBoost model as an efficient machine learning approach for PFAS removal: Effects of material characteristics and operation conditions.
    Karbassiyazdi E; Fattahi F; Yousefi N; Tahmassebi A; Taromi AA; Manzari JZ; Gandomi AH; Altaee A; Razmjou A
    Environ Res; 2022 Dec; 215(Pt 1):114286. PubMed ID: 36096170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient Removal of Perfluorinated Chemicals from Contaminated Water Sources Using Magnetic Fluorinated Polymer Sorbents.
    Tan X; Dewapriya P; Prasad P; Chang Y; Huang X; Wang Y; Gong X; Hopkins TE; Fu C; Thomas KV; Peng H; Whittaker AK; Zhang C
    Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202213071. PubMed ID: 36225164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anion exchange resin removal of per- and polyfluoroalkyl substances (PFAS) from impacted water: A critical review.
    Boyer TH; Fang Y; Ellis A; Dietz R; Choi YJ; Schaefer CE; Higgins CP; Strathmann TJ
    Water Res; 2021 Jul; 200():117244. PubMed ID: 34089925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sequestration and potential release of PFAS from spent engineered sorbents.
    Kah M; Oliver D; Kookana R
    Sci Total Environ; 2021 Apr; 765():142770. PubMed ID: 33071146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The systems containing clays and clay minerals from modified drug release: a review.
    Rodrigues LA; Figueiras A; Veiga F; de Freitas RM; Nunes LC; da Silva Filho EC; da Silva Leite CM
    Colloids Surf B Biointerfaces; 2013 Mar; 103():642-51. PubMed ID: 23253474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.