These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34624871)

  • 1. Pressure-induced metal-insulator transition in oxygen-deficient LiNbO
    Xia C; Chen Y; Chen H
    J Phys Condens Matter; 2021 Oct; 34(2):. PubMed ID: 34624871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles study of oxygen vacancies in LiNbO
    Li J; Liu X
    RSC Adv; 2024 Mar; 14(13):9169-9174. PubMed ID: 38500610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure-induced ferroelectric-like transition creates a polar metal in defect antiperovskites Hg
    Cai W; He J; Li H; Zhang R; Zhang D; Chung DY; Bhowmick T; Wolverton C; Kanatzidis MG; Deemyad S
    Nat Commun; 2021 Mar; 12(1):1509. PubMed ID: 33686062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering an Insulating Ferroelectric Superlattice with a Tunable Band Gap from Metallic Components.
    Ghosh S; Borisevich AY; Pantelides ST
    Phys Rev Lett; 2017 Oct; 119(17):177603. PubMed ID: 29219470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of carrier doping in ZnSnO
    Li J; Su J; Zhang Q; Fang C; Liu X
    Phys Chem Chem Phys; 2024 Jan; 26(3):2242-2248. PubMed ID: 38165283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferroelectrics with a controlled oxygen-vacancy distribution by design.
    Noguchi Y; Matsuo H; Kitanaka Y; Miyayama M
    Sci Rep; 2019 Mar; 9(1):4225. PubMed ID: 30862877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-induced strong ferroelectric polarization in tetra-phase perovskite CsPbBr
    Zhao YQ; Ma QR; Liu B; Yu ZL; Cai MQ
    Phys Chem Chem Phys; 2018 May; 20(21):14718-14724. PubMed ID: 29774911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled magnetic-ferroelectric metal-insulator transition in epitaxially strained SrCoO3 from first principles.
    Lee JH; Rabe KM
    Phys Rev Lett; 2011 Aug; 107(6):067601. PubMed ID: 21902368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles investigation of the ferroelectric, piezoelectric and nonlinear optical properties of LiNbO
    Zhang J; Xu B; Wang YS; Qin Z; Ke SH
    Sci Rep; 2019 Nov; 9(1):17632. PubMed ID: 31772263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating the origin of magnetic ordering in ferroelectric BaTiO
    Majumder S; Basera P; Tripathi M; Choudhary RJ; Bhattacharya S; Bapna K; Phase DM
    J Phys Condens Matter; 2019 May; 31(20):205001. PubMed ID: 30759426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles study for vacancy-induced magnetism in nonmagnetic ferroelectric BaTiO3.
    Cao D; Cai MQ; Zheng Y; Hu WY
    Phys Chem Chem Phys; 2009 Dec; 11(46):10934-8. PubMed ID: 19924328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversibly Controlled Ternary Polar States and Ferroelectric Bias Promoted by Boosting Square-Tensile-Strain.
    Lee JH; Duong NX; Jung MH; Lee HJ; Kim A; Yeo Y; Kim J; Kim GH; Cho BG; Kim J; Naqvi FUH; Bae JS; Kim J; Ahn CW; Kim YM; Song TK; Ko JH; Koo TY; Sohn C; Park K; Yang CH; Yang SM; Lee JH; Jeong HY; Kim TH; Oh YS
    Adv Mater; 2022 Oct; 34(42):e2205825. PubMed ID: 36069028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design for Highly Piezoelectric and Visible/Near-Infrared Photoresponsive Perovskite Oxides.
    Xiao H; Dong W; Guo Y; Wang Y; Zhong H; Li Q; Yang MM
    Adv Mater; 2019 Jan; 31(4):e1805802. PubMed ID: 30444031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistence of ferroelectricity in BaTiO3 through the insulator-metal transition.
    Kolodiazhnyi T; Tachibana M; Kawaji H; Hwang J; Takayama-Muromachi E
    Phys Rev Lett; 2010 Apr; 104(14):147602. PubMed ID: 20481963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong reciprocal interaction between polarization and surface stoichiometry in oxide ferroelectrics.
    Saidi WA; Martirez JM; Rappe AM
    Nano Lett; 2014 Nov; 14(11):6711-7. PubMed ID: 25322070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen Vacancy Injection as a Pathway to Enhancing Electromechanical Response in Ferroelectrics.
    Kelley KP; Morozovska AN; Eliseev EA; Sharma V; Yilmaz DE; van Duin ACT; Ganesh P; Borisevich A; Jesse S; Maksymovych P; Balke N; Kalinin SV; Vasudevan RK
    Adv Mater; 2022 Jan; 34(2):e2106426. PubMed ID: 34647655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen Vacancy Induced Room-Temperature Metal-Insulator Transition in Nickelate Films and Its Potential Application in Photovoltaics.
    Wang L; Dash S; Chang L; You L; Feng Y; He X; Jin KJ; Zhou Y; Ong HG; Ren P; Wang S; Chen L; Wang J
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9769-76. PubMed ID: 27025257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced ferroelectricity in ultrathin films grown directly on silicon.
    Cheema SS; Kwon D; Shanker N; Dos Reis R; Hsu SL; Xiao J; Zhang H; Wagner R; Datar A; McCarter MR; Serrao CR; Yadav AK; Karbasian G; Hsu CH; Tan AJ; Wang LC; Thakare V; Zhang X; Mehta A; Karapetrova E; Chopdekar RV; Shafer P; Arenholz E; Hu C; Proksch R; Ramesh R; Ciston J; Salahuddin S
    Nature; 2020 Apr; 580(7804):478-482. PubMed ID: 32322080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen Vacancies in Perovskite Oxide Piezoelectrics.
    Tyunina M
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence of strong and switchable ferroelectricity despite vacancies.
    Raeliarijaona A; Fu H
    Sci Rep; 2017 Jan; 7():41301. PubMed ID: 28120941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.