BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34624939)

  • 1. The Morphology of Cell Differentiation, Terminal Differentiation and Ageing Seems To Reflect the Same Process: a Short Note.
    Smetana K; Mikulenkova D; Klamova H
    Folia Biol (Praha); 2021; 67(2):70-75. PubMed ID: 34624939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physician Education: Myelodysplastic Syndrome.
    Yoshida Y
    Oncologist; 1996; 1(4):284-287. PubMed ID: 10388004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putative regulators for the continuum of erythroid differentiation revealed by single-cell transcriptome of human BM and UCB cells.
    Huang P; Zhao Y; Zhong J; Zhang X; Liu Q; Qiu X; Chen S; Yan H; Hillyer C; Mohandas N; Pan X; Xu X
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12868-12876. PubMed ID: 32457162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Plasma Gelsolin Protein in the Final Stage of Erythropoiesis and in Correction of Erythroid Dysplasia In Vitro.
    Han SY; Lee EM; Kim S; Kwon AM; Baek EJ
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow Cytometry (FCM) Analysis and Fluorescence-Activated Cell Sorting (FACS) of Erythroid Cells.
    An X; Chen L
    Methods Mol Biol; 2018; 1698():153-174. PubMed ID: 29076089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system.
    Zhang J; Socolovsky M; Gross AW; Lodish HF
    Blood; 2003 Dec; 102(12):3938-46. PubMed ID: 12907435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological investigation on phenylhydrazine-induced erythropoiesis in the adult mouse liver.
    Ploemacher RE; van Soest PL
    Cell Tissue Res; 1977 Mar; 178(4):435-61. PubMed ID: 870201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphometric and Densitometric Analysis of Heterochromatin during Cell Differentiation Using the Leukaemic Granulocytic Lineage as a Convenient Model.
    Smetana K; Mikulenková D; Klamová H
    Folia Biol (Praha); 2017; 63(1):1-5. PubMed ID: 28374668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dominant Nucleolus in the Progenitor Cell Using Human Bone Marrow Erythroid and Granulocytic Cell Lineages as a Model. A Morphological and Cytochemical Note.
    Smetana K; Klamová H; Mikulenková D
    Folia Biol (Praha); 2020; 66(3):111-115. PubMed ID: 33069190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleolar silver-stained granules in maturing erythroid and granulocytic cells.
    Smetana K; Likovský Z
    Cell Tissue Res; 1984; 237(2):367-70. PubMed ID: 6206952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive proteomic analysis of murine terminal erythroid differentiation.
    Gautier EF; Leduc M; Ladli M; Schulz VP; Lefèvre C; Boussaid I; Fontenay M; Lacombe C; Verdier F; Guillonneau F; Hillyer CD; Mohandas N; Gallagher PG; Mayeux P
    Blood Adv; 2020 Apr; 4(7):1464-1477. PubMed ID: 32282884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced activation of autophagy in β-thalassemia/Hb E erythroblasts during erythropoiesis.
    Lithanatudom P; Wannatung T; Leecharoenkiat A; Svasti S; Fucharoen S; Smith DR
    Ann Hematol; 2011 Jul; 90(7):747-58. PubMed ID: 21221583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal erythropoiesis and the pathophysiology of chronic anemia.
    Koury MJ
    Blood Rev; 2014 Mar; 28(2):49-66. PubMed ID: 24560123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogeny of erythropoiesis.
    Palis J
    Curr Opin Hematol; 2008 May; 15(3):155-61. PubMed ID: 18391778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells.
    Carotta S; Pilat S; Mairhofer A; Schmidt U; Dolznig H; Steinlein P; Beug H
    Blood; 2004 Sep; 104(6):1873-80. PubMed ID: 15166028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lyn kinase plays important roles in erythroid expansion, maturation and erythropoietin receptor signalling by regulating inhibitory signalling pathways that control survival.
    Slavova-Azmanova NS; Kucera N; Louw A; Satiaputra J; Handoko A; Singer P; Stone L; McCarthy DJ; Klinken SP; Hibbs ML; Ingley E
    Biochem J; 2014 May; 459(3):455-66. PubMed ID: 24552351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A short cytochemical note on the nucleolar and cytoplasmic RNA concentration in differentiating cells represented by human erythroblasts.
    Smetana K; Klamová H; Jirásková I; Mikulenková D
    Acta Histochem; 2010 Jul; 112(4):407-11. PubMed ID: 19386355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sox6 cell-autonomously stimulates erythroid cell survival, proliferation, and terminal maturation and is thereby an important enhancer of definitive erythropoiesis during mouse development.
    Dumitriu B; Patrick MR; Petschek JP; Cherukuri S; Klingmuller U; Fox PL; Lefebvre V
    Blood; 2006 Aug; 108(4):1198-207. PubMed ID: 16627753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A short note on micronucleoli in the course of terminal maturation of human erythroblasts.
    Smetana K; Jirásková I; Smetana K; Cermák J
    Folia Biol (Praha); 2001; 47(1):14-7. PubMed ID: 11232864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PU.1 determines the self-renewal capacity of erythroid progenitor cells.
    Back J; Dierich A; Bronn C; Kastner P; Chan S
    Blood; 2004 May; 103(10):3615-23. PubMed ID: 14739214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.