These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34624965)

  • 21. Reexpansion of charged nanoparticle assemblies in concentrated electrolytes.
    Reinertsen RJE; Kewalramani S; Jiménez-Ángeles F; Weigand SJ; Bedzyk MJ; Olvera de la Cruz M
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2316537121. PubMed ID: 38289958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting underscreening and generalized Kirkwood transitions in aqueous electrolytes.
    Dinpajooh M; Biasin E; Nienhuis ET; Mergelsberg ST; Benmore CJ; Schenter GK; Fulton JL; Kathmann SM; Mundy CJ
    J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39431448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Re-entrant swelling and redissolution of polyelectrolytes arises from an increased electrostatic decay length at high salt concentrations.
    Liu G; Parsons D; Craig VSJ
    J Colloid Interface Sci; 2020 Nov; 579():369-378. PubMed ID: 32615480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics study of screening at ionic surfaces.
    Desai TG
    J Chem Phys; 2007 Oct; 127(15):154707. PubMed ID: 17949191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-range electrostatic screening in ionic liquids.
    Gebbie MA; Dobbs HA; Valtiner M; Israelachvili JN
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7432-7. PubMed ID: 26040001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decay behavior of screened electrostatic surface forces in ionic liquids: the vital role of non-local electrostatics.
    Kjellander R
    Phys Chem Chem Phys; 2016 Jul; 18(28):18985-9000. PubMed ID: 27356099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrokinetic properties of NaCl solution via molecular dynamics simulations with scaled-charge electrolytes.
    Coelho FM; Vinogradov J; Derksen JJ; Franco LFM
    J Chem Phys; 2024 Jul; 161(4):. PubMed ID: 39072421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correct scaling of the correlation length from a theory for concentrated electrolytes.
    Ciach A; Patsahan O
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34186526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic Screening Length in "Soft" Electrolyte Solutions.
    Adibnia V; Shrestha BR; Mirbagheri M; Murschel F; De Crescenzo G; Banquy X
    ACS Macro Lett; 2019 Aug; 8(8):1017-1021. PubMed ID: 35619477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scaling Analysis of the Screening Length in Concentrated Electrolytes.
    Lee AA; Perez-Martinez CS; Smith AM; Perkin S
    Phys Rev Lett; 2017 Jul; 119(2):026002. PubMed ID: 28753344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient method to establish electrostatic screening lengths of restricted primitive model electrolytes.
    Forsman J; Ribar D; Woodward CE
    Phys Chem Chem Phys; 2024 Jul; 26(29):19921-19933. PubMed ID: 38990567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrostatic correlations in electrolytes: Contribution of screening ion interactions to the excess chemical potential.
    Gillespie D; Valiskó M; Boda D
    J Chem Phys; 2021 Dec; 155(22):221102. PubMed ID: 34911314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electric double-layer structure in primitive model electrolytes: comparing molecular dynamics with local-density approximations.
    Giera B; Henson N; Kober EM; Shell MS; Squires TM
    Langmuir; 2015 Mar; 31(11):3553-62. PubMed ID: 25723189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overscreening and Underscreening in Solid-Electrolyte Grain Boundary Space-Charge Layers.
    Dean JM; Coles SW; Saunders WR; McCluskey AR; Wolf MJ; Walker AB; Morgan BJ
    Phys Rev Lett; 2021 Sep; 127(13):135502. PubMed ID: 34623837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial Layering in the Electric Double Layer of Ionic Liquids.
    de Souza JP; Goodwin ZAH; McEldrew M; Kornyshev AA; Bazant MZ
    Phys Rev Lett; 2020 Sep; 125(11):116001. PubMed ID: 32975984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intricate coupling between ion-ion and ion-surface correlations in double layers as illustrated by charge inversion-combined effects of strong Coulomb correlations and excluded volume.
    Kjellander R
    J Phys Condens Matter; 2009 Oct; 21(42):424101. PubMed ID: 21715836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asymmetric primitive-model electrolytes: Debye-Hückel theory, criticality, and energy bounds.
    Zuckerman DM; Fisher ME; Bekiranov S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011206. PubMed ID: 11461239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrolytes in a nanometer slab-confinement: ion-specific structure and solvation forces.
    Kalcher I; Schulz JC; Dzubiella J
    J Chem Phys; 2010 Oct; 133(16):164511. PubMed ID: 21033809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A molecular Debye-Hückel theory and its applications to electrolyte solutions.
    Xiao T; Song X
    J Chem Phys; 2011 Sep; 135(10):104104. PubMed ID: 21932873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.