These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34624977)

  • 1. Simple but accurate estimation of light-matter coupling strength and optical loss for a molecular emitter coupled with photonic modes.
    Wang S; Chuang YT; Hsu LY
    J Chem Phys; 2021 Oct; 155(13):134117. PubMed ID: 34624977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models.
    Hu D; Huo P
    J Chem Theory Comput; 2023 Apr; 19(8):2353-2368. PubMed ID: 37000936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic theory of exciton-polariton model involving multiple molecules: Macroscopic quantum electrodynamics formulation and essence of direct intermolecular interactions.
    Chuang YT; Hsu LY
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38501476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dynamics of a molecular emitter strongly coupled with surface plasmon polaritons: A macroscopic quantum electrodynamics approach.
    Wang S; Scholes GD; Hsu LY
    J Chem Phys; 2019 Jul; 151(1):014105. PubMed ID: 31272186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational Theory of Nonrelativistic Quantum Electrodynamics.
    Rivera N; Flick J; Narang P
    Phys Rev Lett; 2019 May; 122(19):193603. PubMed ID: 31144944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics.
    Mandal A; Taylor MAD; Weight BM; Koessler ER; Li X; Huo P
    Chem Rev; 2023 Aug; 123(16):9786-9879. PubMed ID: 37552606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics.
    Mandal A; Krauss TD; Huo P
    J Phys Chem B; 2020 Jul; 124(29):6321-6340. PubMed ID: 32589846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides.
    Javadi A; Maibom S; Sapienza L; Thyrrestrup H; García PD; Lodahl P
    Opt Express; 2014 Dec; 22(25):30992-1001. PubMed ID: 25607048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect.
    De Liberato S
    Phys Rev Lett; 2014 Jan; 112(1):016401. PubMed ID: 24483911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe
    Wurdack M; Lundt N; Klaas M; Baumann V; Kavokin AV; Höfling S; Schneider C
    Nat Commun; 2017 Aug; 8(1):259. PubMed ID: 28811462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum dynamics simulations of the 2D spectroscopy for exciton polaritons.
    Mondal ME; Koessler ER; Provazza J; Vamivakas AN; Cundiff ST; Krauss TD; Huo P
    J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37655761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical theory of a quantum emitter strongly coupled to Anderson-localized modes.
    Thyrrestrup H; Smolka S; Sapienza L; Lodahl P
    Phys Rev Lett; 2012 Mar; 108(11):113901. PubMed ID: 22540472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lindblad Master Equation Capable of Describing Hybrid Quantum Systems in the Ultrastrong Coupling Regime.
    Lednev M; García-Vidal FJ; Feist J
    Phys Rev Lett; 2024 Mar; 132(10):106902. PubMed ID: 38518335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sculpting Fano Resonances To Control Photonic-Plasmonic Hybridization.
    Thakkar N; Rea MT; Smith KC; Heylman KD; Quillin SC; Knapper KA; Horak EH; Masiello DJ; Goldsmith RH
    Nano Lett; 2017 Nov; 17(11):6927-6934. PubMed ID: 28968499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Chiral Light-Matter Interactions in a Waveguide-Coupled Nanocavity.
    Hallett D; Foster AP; Whittaker D; Skolnick MS; Wilson LR
    ACS Photonics; 2022 Feb; 9(2):706-713. PubMed ID: 35434181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating New Reactivities Enabled by Polariton Photochemistry.
    Mandal A; Huo P
    J Phys Chem Lett; 2019 Sep; 10(18):5519-5529. PubMed ID: 31475529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-Dependent Sternheimer Linear-Response Formalism for Strongly Coupled Light-Matter Systems.
    Welakuh DM; Flick J; Ruggenthaler M; Appel H; Rubio A
    J Chem Theory Comput; 2022 Jul; 18(7):4354-4365. PubMed ID: 35675628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity.
    Yalla R; Sadgrove M; Nayak KP; Hakuta K
    Phys Rev Lett; 2014 Oct; 113(14):143601. PubMed ID: 25325641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. II. Polariton-mediated population dynamics in a dimer system.
    Chuang YT; Wang S; Hsu LY
    J Chem Phys; 2022 Dec; 157(23):234109. PubMed ID: 36550029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Strong Coupling with Protein Vibrational Modes.
    Vergauwe RMA; George J; Chervy T; Hutchison JA; Shalabney A; Torbeev VY; Ebbesen TW
    J Phys Chem Lett; 2016 Oct; 7(20):4159-4164. PubMed ID: 27689759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.