These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 34625072)
1. Reciprocal deregulation of NKX3.1 and AURKA axis in castration-resistant prostate cancer and NEPC models. Sooreshjani MA; Kamra M; Zoubeidi A; Shah K J Biomed Sci; 2021 Oct; 28(1):68. PubMed ID: 34625072 [TBL] [Abstract][Full Text] [Related]
2. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Yasumizu Y; Rajabi H; Jin C; Hata T; Pitroda S; Long MD; Hagiwara M; Li W; Hu Q; Liu S; Yamashita N; Fushimi A; Kui L; Samur M; Yamamoto M; Zhang Y; Zhang N; Hong D; Maeda T; Kosaka T; Wong KK; Oya M; Kufe D Nat Commun; 2020 Jan; 11(1):338. PubMed ID: 31953400 [TBL] [Abstract][Full Text] [Related]
4. Molecular Interplay between AURKA and SPOP Dictates CRPC Pathogenesis via Androgen Receptor. Nikhil K; Kamra M; Raza A; Haymour HS; Shah K Cancers (Basel); 2020 Nov; 12(11):. PubMed ID: 33158056 [TBL] [Abstract][Full Text] [Related]
5. Aurora Kinase A-YBX1 Synergy Fuels Aggressive Oncogenic Phenotypes and Chemoresistance in Castration-Resistant Prostate Cancer. Nikhil K; Raza A; Haymour HS; Flueckiger BV; Chu J; Shah K Cancers (Basel); 2020 Mar; 12(3):. PubMed ID: 32178290 [TBL] [Abstract][Full Text] [Related]
6. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Mosquera JM; Beltran H; Park K; MacDonald TY; Robinson BD; Tagawa ST; Perner S; Bismar TA; Erbersdobler A; Dhir R; Nelson JB; Nanus DM; Rubin MA Neoplasia; 2013 Jan; 15(1):1-10. PubMed ID: 23358695 [TBL] [Abstract][Full Text] [Related]
7. Chen X; Ma J; Wang X; Zi T; Qian D; Li C; Xu C Front Endocrinol (Lausanne); 2022; 13():1106175. PubMed ID: 36601001 [TBL] [Abstract][Full Text] [Related]
8. Bhagirath D; Yang TL; Tabatabai ZL; Majid S; Dahiya R; Tanaka Y; Saini S Clin Cancer Res; 2019 Nov; 25(21):6532-6545. PubMed ID: 31371344 [TBL] [Abstract][Full Text] [Related]
9. The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. Bishop JL; Thaper D; Vahid S; Davies A; Ketola K; Kuruma H; Jama R; Nip KM; Angeles A; Johnson F; Wyatt AW; Fazli L; Gleave ME; Lin D; Rubin MA; Collins CC; Wang Y; Beltran H; Zoubeidi A Cancer Discov; 2017 Jan; 7(1):54-71. PubMed ID: 27784708 [TBL] [Abstract][Full Text] [Related]
10. Targeting the MYCN-PARP-DNA Damage Response Pathway in Neuroendocrine Prostate Cancer. Zhang W; Liu B; Wu W; Li L; Broom BM; Basourakos SP; Korentzelos D; Luan Y; Wang J; Yang G; Park S; Azad AK; Cao X; Kim J; Corn PG; Logothetis CJ; Aparicio AM; Chinnaiyan AM; Navone N; Troncoso P; Thompson TC Clin Cancer Res; 2018 Feb; 24(3):696-707. PubMed ID: 29138344 [No Abstract] [Full Text] [Related]
12. Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Song H; Zhang B; Watson MA; Humphrey PA; Lim H; Milbrandt J Oncogene; 2009 Sep; 28(37):3307-19. PubMed ID: 19597465 [TBL] [Abstract][Full Text] [Related]
13. The expression of AURKA is androgen regulated in castration-resistant prostate cancer. Kivinummi K; Urbanucci A; Leinonen K; Tammela TLJ; Annala M; Isaacs WB; Bova GS; Nykter M; Visakorpi T Sci Rep; 2017 Dec; 7(1):17978. PubMed ID: 29269934 [TBL] [Abstract][Full Text] [Related]
14. Treatment-induced neuroendocrine prostate cancer and Wishahi M World J Clin Cases; 2024 May; 12(13):2143-2146. PubMed ID: 38808339 [TBL] [Abstract][Full Text] [Related]
15. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Tan PY; Chang CW; Chng KR; Wansa KD; Sung WK; Cheung E Mol Cell Biol; 2012 Jan; 32(2):399-414. PubMed ID: 22083957 [TBL] [Abstract][Full Text] [Related]
16. Role of MicroRNAs in Neuroendocrine Prostate Cancer. Sreekumar A; Saini S Noncoding RNA; 2022 Mar; 8(2):. PubMed ID: 35447888 [TBL] [Abstract][Full Text] [Related]
17. Smoothened loss is a characteristic of neuroendocrine prostate cancer. Wang L; Li H; Li Z; Li M; Tang Q; Wu C; Lu Z Prostate; 2021 Jun; 81(9):508-520. PubMed ID: 33955576 [TBL] [Abstract][Full Text] [Related]
18. The inhibitory effects of NKX3.1 on IGF-1R expression and its signalling pathway in human prostatic carcinoma PC3 cells. Zhang PJ; Hu XY; Liu CY; Chen ZB; Ni NN; Yu Y; Yang LN; Huang ZQ; Liu QW; Jiang AL Asian J Androl; 2012 May; 14(3):493-8. PubMed ID: 22179513 [TBL] [Abstract][Full Text] [Related]
19. Alternative RNA splicing of the GIT1 gene is associated with neuroendocrine prostate cancer. Lee AR; Gan Y; Xie N; Ramnarine VR; Lovnicki JM; Dong X Cancer Sci; 2019 Jan; 110(1):245-255. PubMed ID: 30417466 [TBL] [Abstract][Full Text] [Related]