These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34625245)

  • 1. Chiral carbon quantum dots as fluorescent probe for rapid chiral recognition of isoleucine enantiomers.
    Hou X; Song J; Wu Q; Lv H
    Anal Chim Acta; 2021 Nov; 1184():339012. PubMed ID: 34625245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step hydrothermal preparation of chiral carbon quantum dots and enantioselective sensing of glutamine enantiomeric isomers.
    Li X; Wu J; Zhu X
    Luminescence; 2023 Dec; ():. PubMed ID: 38041512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying carbon dots with L-phenylalanine for rapid discrimination of tryptophan enantiomers.
    Lang B; Ma W; Liao X; Duan Y; Ren C; Chen H
    Anal Methods; 2024 Jun; 16(24):3907-3916. PubMed ID: 38829128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe.
    Jafar-Nezhad Ivrigh Z; Fahimi-Kashani N; Morad R; Jamshidi Z; Hormozi-Nezhad MR
    Anal Chim Acta; 2022 Oct; 1231():340386. PubMed ID: 36220286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step electrodeposition of the MOF@CCQDs/NiF electrode for chiral recognition of tyrosine isomers.
    Hou Y; Liu Z; Tong L; Zhao L; Kuang X; Kuang R; Ju H
    Dalton Trans; 2020 Jan; 49(1):31-34. PubMed ID: 31808491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a Chiral Fluorescent Probe for Tryptophan Enantiomers/Ascorbic Acid Identification.
    Li J; Du N; Guan R; Zhao S
    ACS Appl Mater Interfaces; 2023 May; 15(19):23642-23652. PubMed ID: 37134180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral dual-emission composite material fluorescein/CCQDs @ZIF-8 for highly efficient recognition of phenylenediamine isomers and their oxidized product.
    Liu JY; Wang TT; Li Y; Liu YY; Ding B
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jun; 294():122545. PubMed ID: 36863079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing tyrosine enantiomers by using chiral CdSe/CdS quantum dots capped with N-acetyl-l-cysteine.
    Gao F; Ma S; Xiao X; Hu Y; Zhao D; He Z
    Talanta; 2017 Jan; 163():102-110. PubMed ID: 27886758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent and Colorimetric Dual-signal Enantiomers Recognition via Enzyme Catalysis: The Case of Glucose Enantiomers Using Nitrogen-doped Silicon Quantum Dots/Silver Probe Coupled with β-D-Glucose Oxidase.
    Yi Y; Liu L; Wu Y; Zhu G
    Anal Sci; 2021 Feb; 37(2):275-281. PubMed ID: 32863333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral carbon dots derived from tryptophan and threonine for enantioselective sensing of L/D-Lysine.
    Wei S; Wang C; Wang Y; Yin X; Hu K; Liu M; Sun G; Lu L
    J Colloid Interface Sci; 2024 May; 662():48-57. PubMed ID: 38335739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of fluorescein-modified polymer dots and their application in chiral discrimination of lysine enantiomers.
    Wang Z; Ji X; Zhao J; Ji J; Li G; Yang G; Xia H; Hou J
    Mikrochim Acta; 2022 Dec; 190(1):29. PubMed ID: 36522482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral recognition of phenylglycinol enantiomers based on N-acetyl-l-cysteine capped CdTe quantum dots in the presence of Ag
    Guo Y; Zeng X; Yuan H; Huang Y; Zhao Y; Wu H; Yang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():23-29. PubMed ID: 28432917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Chiral Carbon Quantum Dots and its Application.
    Li X; YujuanSun ; Zhu X
    J Fluoresc; 2024 Jan; 34(1):1-13. PubMed ID: 37199894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. l-Pyroglutamic Acid-Modified CdSe/ZnS Quantum Dots: A New Fluorescence-Responsive Chiral Sensing Platform for Stereospecific Molecular Recognition.
    Zhu F; Wang J; Xie S; Zhu Y; Wang L; Xu J; Liao S; Ren J; Liu Q; Yang H; Chen X
    Anal Chem; 2020 Sep; 92(17):12040-12048. PubMed ID: 32786480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The study of chiral recognition on ibuprofen enantiomers by a fluorescent probe based on β-cyclodextrin modified ZnS:Mn quantum dots.
    Zeng Y; Wang Y; Liang Z; Jiao Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():119002. PubMed ID: 33035885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemiluminescent chiral discrimination with chiral Ag
    Zhao Q; Cai W; Yang B; Yin ZZ; Wu D; Kong Y
    Analyst; 2021 Oct; 146(20):6245-6251. PubMed ID: 34528650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral drug fluorometry based on a calix[6]arene/molecularly imprinted polymer double recognition element grafted on nano-C-dots/Ir/Au.
    Li S; Pang C; Ma X; Zhao M; Li H; Wang M; Li J; Luo J
    Mikrochim Acta; 2020 Jun; 187(7):394. PubMed ID: 32556561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonexclusive fluorescent sensing for L/D enantiomers enabled by dynamic nanoparticle-nanorod assemblies.
    Song L; Wang S; Kotov NA; Xia Y
    Anal Chem; 2012 Sep; 84(17):7330-5. PubMed ID: 22867025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of molecularly imprinted fluorescent probe based on biomass-derived carbon quantum dots for detection of mesotrione.
    Sun X; Liu Y; Niu N; Chen L
    Anal Bioanal Chem; 2019 Aug; 411(21):5519-5530. PubMed ID: 31147761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Simulation of the Separation of Isoleucine Enantiomers by β-Cyclodextrin.
    Alvira E
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30875754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.