These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 34625345)
1. The relationship between myopia progression and axial elongation in children wearing orthokeratology contact lenses. Chen Z; Zhang Z; Xue F; Zhou J; Zeng L; Qu X; Zhou X Cont Lens Anterior Eye; 2023 Feb; 46(1):101517. PubMed ID: 34625345 [TBL] [Abstract][Full Text] [Related]
2. Crystalline lens thickness change is associated with axial length elongation and myopia progression in orthokeratology. Wang Z; Meng Y; Wang Z; Hao L; Rashidi V; Sun H; Zhang J; Liu X; Duan X; Jiao Z; Qie S; Yan Z Cont Lens Anterior Eye; 2022 Aug; 45(4):101534. PubMed ID: 34772627 [TBL] [Abstract][Full Text] [Related]
3. Central and Peripheral Corneal Power Change in Myopic Orthokeratology and Its Relationship With 2-Year Axial Length Change. Zhong Y; Chen Z; Xue F; Miao H; Zhou X Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4514-9. PubMed ID: 26200489 [TBL] [Abstract][Full Text] [Related]
4. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length. Li Z; Hu Y; Cui D; Long W; He M; Yang X Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939 [TBL] [Abstract][Full Text] [Related]
5. Orthokeratology combined with spectacles in moderate to high myopia adolescents. Wang F; Wu G; Xu X; Wu H; Peng Y; Lin Y; Jiang J Cont Lens Anterior Eye; 2024 Feb; 47(1):102088. PubMed ID: 37977905 [TBL] [Abstract][Full Text] [Related]
6. Relationship between myopia control and amount of corneal refractive change after orthokeratology lens treatment. Sun L; Song HX; Li ZX; Chen Y; He ZQ BMC Ophthalmol; 2023 Oct; 23(1):439. PubMed ID: 37904136 [TBL] [Abstract][Full Text] [Related]
7. Change in Corneal Power Distribution in Orthokeratology: A Predictor for the Change in Axial Length. Zhang Z; Chen Z; Chen Z; Zhou J; Zeng L; Xue F; Qu X; Zhou X Transl Vis Sci Technol; 2022 Feb; 11(2):18. PubMed ID: 35142785 [TBL] [Abstract][Full Text] [Related]
9. Assessing the change of anisometropia in unilateral myopic children receiving monocular orthokeratology treatment. Tsai WS; Wang JH; Lee YC; Chiu CJ J Formos Med Assoc; 2019 Jul; 118(7):1122-1128. PubMed ID: 30782426 [TBL] [Abstract][Full Text] [Related]
10. The control effect of orthokeratology on axial length elongation in Chinese children with myopia. Zhu MJ; Feng HY; He XG; Zou HD; Zhu JF BMC Ophthalmol; 2014 Nov; 14():141. PubMed ID: 25417926 [TBL] [Abstract][Full Text] [Related]
11. Altering optical zone diameter, reverse curve width, and compression factor: impacts on visual performance and axial elongation in orthokeratology. Wu J; Zhang X; Wang L; Zhang P; Guo X; Xie P Cont Lens Anterior Eye; 2024 Jun; 47(3):102136. PubMed ID: 38503665 [TBL] [Abstract][Full Text] [Related]
12. Comparison of four different orthokeratology lenses in controlling myopia progression. Chen R; Yu J; Lipson M; Cheema AA; Chen Y; Lian H; Huang J; McAlinden C Cont Lens Anterior Eye; 2020 Feb; 43(1):78-83. PubMed ID: 31812507 [TBL] [Abstract][Full Text] [Related]
13. Higher spherical equivalent refractive errors is associated with slower axial elongation wearing orthokeratology. Fu AC; Chen XL; Lv Y; Wang SL; Shang LN; Li XH; Zhu Y Cont Lens Anterior Eye; 2016 Feb; 39(1):62-6. PubMed ID: 26254302 [TBL] [Abstract][Full Text] [Related]
14. Categorisation of myopia progression by change in refractive error and axial elongation and their impact on benefit of myopia control using orthokeratology. Cho P; Cheung SW; Boost MV PLoS One; 2020; 15(12):e0243416. PubMed ID: 33373370 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the long-term effects of atropine in combination with Orthokeratology and defocus incorporated multiple segment lenses for myopia control in Chinese children and adolescents. Tang T; Lu Y; Li X; Zhao H; Wang K; Li Y; Zhao M Eye (Lond); 2024 Jun; 38(9):1660-1667. PubMed ID: 38418604 [TBL] [Abstract][Full Text] [Related]
16. The effect of the back optic zone diameter on the treatment zone area and axial elongation in orthokeratology. Ding W; Jiang D; Tian Y; Lu W; Shi L; Ji R; Zhao C; Leng L Cont Lens Anterior Eye; 2024 Apr; 47(2):102131. PubMed ID: 38403480 [TBL] [Abstract][Full Text] [Related]
17. Factors associated with faster axial elongation after orthokeratology treatment. Qi Y; Liu L; Li Y; Zhang F BMC Ophthalmol; 2022 Feb; 22(1):62. PubMed ID: 35135507 [TBL] [Abstract][Full Text] [Related]
18. The effect of back optic zone diameter on relative corneal refractive power distribution and corneal higher-order aberrations in orthokeratology. Li N; Lin W; Zhang K; Li B; Su Q; Du B; Wei R Cont Lens Anterior Eye; 2023 Feb; 46(1):101755. PubMed ID: 36088210 [TBL] [Abstract][Full Text] [Related]
19. Assessing the efficacy of myopia control in monocular orthokeratology treated unilateral myopic children. Chen Y; Zheng C; Zhu R; Dong L; Cen J; Yu J; Zhao P; Kang X BMC Ophthalmol; 2022 Dec; 22(1):499. PubMed ID: 36536320 [TBL] [Abstract][Full Text] [Related]
20. Myopia control during orthokeratology lens wear in children using a novel study design. Swarbrick HA; Alharbi A; Watt K; Lum E; Kang P Ophthalmology; 2015 Mar; 122(3):620-30. PubMed ID: 25439432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]