These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34625749)

  • 1. The tertiary structure of the human Xkr8-Basigin complex that scrambles phospholipids at plasma membranes.
    Sakuragi T; Kanai R; Tsutsumi A; Narita H; Onishi E; Nishino K; Miyazaki T; Baba T; Kosako H; Nakagawa A; Kikkawa M; Toyoshima C; Nagata S
    Nat Struct Mol Biol; 2021 Oct; 28(10):825-834. PubMed ID: 34625749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the C-terminal tail region as a plug to regulate XKR8 lipid scramblase.
    Sakuragi T; Kanai R; Otani M; Kikkawa M; Toyoshima C; Nagata S
    J Biol Chem; 2024 Mar; 300(3):105755. PubMed ID: 38364890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure.
    Suzuki J; Imanishi E; Nagata S
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9509-14. PubMed ID: 27503893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid scrambling on the plasma membrane.
    Suzuki J; Nagata S
    Methods Enzymol; 2014; 544():381-93. PubMed ID: 24974298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the scrambling domain of the TMEM16 family.
    Gyobu S; Ishihara K; Suzuki J; Segawa K; Nagata S
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6274-6279. PubMed ID: 28559311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM structures of the caspase-activated protein XKR9 involved in apoptotic lipid scrambling.
    Straub MS; Alvadia C; Sawicka M; Dutzler R
    Elife; 2021 Jul; 10():. PubMed ID: 34263724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure.
    Sakuragi T; Kosako H; Nagata S
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):2907-2912. PubMed ID: 30718401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity.
    Manoharan C; Wilson MC; Sessions RB; Halestrap AP
    Mol Membr Biol; 2006; 23(6):486-98. PubMed ID: 17127621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase.
    Hiraizumi M; Yamashita K; Nishizawa T; Nureki O
    Science; 2019 Sep; 365(6458):1149-1155. PubMed ID: 31416931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of TMEM16A/ANO1 and TMEM16F/ANO6 ion currents and phospholipid scrambling by Ca
    Schreiber R; Ousingsawat J; Wanitchakool P; Sirianant L; Benedetto R; Reiss K; Kunzelmann K
    J Physiol; 2018 Jan; 596(2):217-229. PubMed ID: 29134661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane.
    Bevers EM; Williamson PL
    Physiol Rev; 2016 Apr; 96(2):605-45. PubMed ID: 26936867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of human phospholipid scramblases in apoptosis: An overview.
    Sivagnanam U; Palanirajan SK; Gummadi SN
    Biochim Biophys Acta Mol Cell Res; 2017 Dec; 1864(12):2261-2271. PubMed ID: 28844836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated Met-Leu-Phe-stimulated neutrophils.
    Frasch SC; Henson PM; Nagaosa K; Fessler MB; Borregaard N; Bratton DL
    J Biol Chem; 2004 Apr; 279(17):17625-33. PubMed ID: 14766753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of apoptotic phosphatidylserine exposure.
    Mariño G; Kroemer G
    Cell Res; 2013 Nov; 23(11):1247-8. PubMed ID: 23979019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule analysis of phospholipid scrambling by TMEM16F.
    Watanabe R; Sakuragi T; Noji H; Nagata S
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3066-3071. PubMed ID: 29507235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane binding of human phospholipid scramblase 1 cytoplasmic domain.
    Posada IM; Sánchez-Magraner L; Hervás JH; Alonso A; Monaco HL; Goñi FM
    Biochim Biophys Acta; 2014 Jul; 1838(7):1785-92. PubMed ID: 24680654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts.
    Woon LA; Holland JW; Kable EP; Roufogalis BD
    Cell Calcium; 1999 Apr; 25(4):313-20. PubMed ID: 10456228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum.
    Verchère A; Ou WL; Ploier B; Morizumi T; Goren MA; Bütikofer P; Ernst OP; Khelashvili G; Menon AK
    Sci Rep; 2017 Aug; 7(1):9522. PubMed ID: 28842688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identity of a conserved motif in phospholipid scramblase that is required for Ca2+-accelerated transbilayer movement of membrane phospholipids.
    Zhou Q; Sims PJ; Wiedmer T
    Biochemistry; 1998 Feb; 37(8):2356-60. PubMed ID: 9485382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of PITPbeta in complex with phosphatidylcholine: comparison of structure and lipid transfer to other PITP isoforms.
    Vordtriede PB; Doan CN; Tremblay JM; Helmkamp GM; Yoder MD
    Biochemistry; 2005 Nov; 44(45):14760-71. PubMed ID: 16274224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.