BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34626146)

  • 41. Impact of the functional status of saeRS on in vivo phenotypes of Staphylococcus aureus sarA mutants.
    Beenken KE; Mrak LN; Zielinska AK; Atwood DN; Loughran AJ; Griffin LM; Matthews KA; Anthony AM; Spencer HJ; Skinner RA; Post GR; Lee CY; Smeltzer MS
    Mol Microbiol; 2014 Jun; 92(6):1299-312. PubMed ID: 24779437
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rot and SaeRS cooperate to activate expression of the staphylococcal superantigen-like exoproteins.
    Benson MA; Lilo S; Nygaard T; Voyich JM; Torres VJ
    J Bacteriol; 2012 Aug; 194(16):4355-65. PubMed ID: 22685286
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The influence of SaeRS and σ(B) on the expression of superantigens in different Staphylococcus aureus isolates.
    Kusch K; Hanke K; Holtfreter S; Schmudde M; Kohler C; Erck C; Wehland J; Hecker M; Ohlsen K; Bröker B; Engelmann S
    Int J Med Microbiol; 2011 Aug; 301(6):488-99. PubMed ID: 21470910
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Teoh WP; Chen X; Laczkovich I; Alonzo F
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stochastic Expression of Sae-Dependent Virulence Genes during Staphylococcus aureus Biofilm Development Is Dependent on SaeS.
    DelMain EA; Moormeier DE; Endres JL; Hodges RE; Sadykov MR; Horswill AR; Bayles KW
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937649
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of two branched-chain amino acid transporters in Staphylococcus aureus growth, membrane fatty acid composition and virulence.
    Kaiser JC; Sen S; Sinha A; Wilkinson BJ; Heinrichs DE
    Mol Microbiol; 2016 Dec; 102(5):850-864. PubMed ID: 27589208
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications.
    Kenny JG; Ward D; Josefsson E; Jonsson IM; Hinds J; Rees HH; Lindsay JA; Tarkowski A; Horsburgh MJ
    PLoS One; 2009; 4(2):e4344. PubMed ID: 19183815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a dual fluorescent reporter system to identify inhibitors of
    Tao Z; Ke K; Shi D; Zhu L
    Appl Environ Microbiol; 2023 Nov; 89(11):e0097823. PubMed ID: 37889047
    [No Abstract]   [Full Text] [Related]  

  • 49. The SaeRS Two-Component System of  Staphylococcus aureus.
    Liu Q; Yeo WS; Bae T
    Genes (Basel); 2016 Oct; 7(10):. PubMed ID: 27706107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS.
    Sun F; Li C; Jeong D; Sohn C; He C; Bae T
    J Bacteriol; 2010 Apr; 192(8):2111-27. PubMed ID: 20172998
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids.
    Omae Y; Hanada Y; Sekimizu K; Kaito C
    J Biol Chem; 2013 Aug; 288(35):25542-25550. PubMed ID: 23873929
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus.
    Geiger T; Goerke C; Fritz M; Schäfer T; Ohlsen K; Liebeke M; Lalk M; Wolz C
    Infect Immun; 2010 May; 78(5):1873-83. PubMed ID: 20212088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of
    Jenul C; Horswill AR
    Microbiol Spectr; 2019 Apr; 7(2):. PubMed ID: 30953424
    [No Abstract]   [Full Text] [Related]  

  • 54. Salicylic acid enhances Staphylococcus aureus extracellular adhesin protein expression.
    Alvarez LP; Barbagelata MS; Cheung AL; Sordelli DO; Buzzola FR
    Microbes Infect; 2011 Nov; 13(12-13):1073-80. PubMed ID: 21714946
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The novel transcriptional regulator SA1804 Is involved in mediating the invasion and cytotoxicity of Staphylococcus aureus.
    Yang J; Liang X; Ji Y
    Front Microbiol; 2015; 6():174. PubMed ID: 25806024
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus.
    Pragman AA; Yarwood JM; Tripp TJ; Schlievert PM
    J Bacteriol; 2004 Apr; 186(8):2430-8. PubMed ID: 15060046
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inducible Expression of a Resistance-Nodulation-Division-Type Efflux Pump in Staphylococcus aureus Provides Resistance to Linoleic and Arachidonic Acids.
    Alnaseri H; Arsic B; Schneider JE; Kaiser JC; Scinocca ZC; Heinrichs DE; McGavin MJ
    J Bacteriol; 2015 Jun; 197(11):1893-905. PubMed ID: 25802299
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Total Synthesis of Xanthoangelol B and Its Various Fragments: Toward Inhibition of Virulence Factor Production of Staphylococcus aureus.
    Mizar P; Arya R; Kim T; Cha S; Ryu KS; Yeo WS; Bae T; Kim DW; Park KH; Kim KK; Lee SS
    J Med Chem; 2018 Dec; 61(23):10473-10487. PubMed ID: 30388007
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of Staphylococcus aureus Biofilm Formation and Virulence Factor Production by Petroselinic Acid and Other Unsaturated C18 Fatty Acids.
    Lee JH; Kim YG; Lee J
    Microbiol Spectr; 2022 Jun; 10(3):e0133022. PubMed ID: 35647620
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SDS interferes with SaeS signaling of Staphylococcus aureus independently of SaePQ.
    Makgotlho PE; Marincola G; Schäfer D; Liu Q; Bae T; Geiger T; Wasserman E; Wolz C; Ziebuhr W; Sinha B
    PLoS One; 2013; 8(8):e71644. PubMed ID: 23977102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.