These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 34626308)
1. Testis transcriptome profiling identified lncRNAs involved in spermatogenic arrest of cattleyak. Cai X; Wu S; Mipam T; Luo H; Yi C; Xu C; Zhao W; Wang H; Zhong J Funct Integr Genomics; 2021 Nov; 21(5-6):665-678. PubMed ID: 34626308 [TBL] [Abstract][Full Text] [Related]
2. Testis transcriptome profiling identified genes involved in spermatogenic arrest of cattleyak. Wu S; Mipam T; Xu C; Zhao W; Shah MA; Yi C; Luo H; Cai X; Zhong J PLoS One; 2020; 15(2):e0229503. PubMed ID: 32092127 [TBL] [Abstract][Full Text] [Related]
3. Differentially expressed microRNAs between cattleyak and yak testis. Xu C; Wu S; Zhao W; Mipam T; Liu J; Liu W; Yi C; Shah MA; Yu S; Cai X Sci Rep; 2018 Jan; 8(1):592. PubMed ID: 29330490 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of testis transcriptomes associated with male infertility in cattleyak. Cai X; Yu S; Mipam T; Yang F; Zhao W; Liu W; Cao S; Shen L; Zhao F; Sun L; Xu C; Wu S Theriogenology; 2017 Jan; 88():28-42. PubMed ID: 27865410 [TBL] [Abstract][Full Text] [Related]
5. Comparative iTRAQ proteomics revealed proteins associated with spermatogenic arrest of cattleyak. Yu S; Cai X; Sun L; Zuo Z; Mipam T; Cao S; Shen L; Ren Z; Chen X; Yang F; Deng J; Ma X; Wang Y J Proteomics; 2016 Jun; 142():102-13. PubMed ID: 27153760 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptome analysis in the caput segment of yak and cattleyak epididymis. Adjei M; Yan Y; Li C; Pan C; Pan M; Wang P; Li K; Shahzad K; Chen X; Zhao W Theriogenology; 2023 Jan; 195():217-228. PubMed ID: 36368116 [TBL] [Abstract][Full Text] [Related]
7. Comparative testis proteome dataset between cattleyak and yak. Yang F; Mipam T; Sun L; Yu S; Cai X Data Brief; 2016 Sep; 8():420-5. PubMed ID: 27366779 [TBL] [Abstract][Full Text] [Related]
8. Comparative testis proteome of cattleyak from different developmental stages. Sun L; Mipam TD; Zhao F; Liu W; Zhao W; Wu S; Xu C; Yu S; Cai X Animal; 2017 Jan; 11(1):101-111. PubMed ID: 27346835 [TBL] [Abstract][Full Text] [Related]
9. Comparative RNA-Seq Analysis of Differentially Expressed Genes in the Epididymides of Yak and Cattleyak. Zhao W; Mengal K; Yuan M; Quansah E; Li P; Wu S; Xu C; Yi C; Cai X Curr Genomics; 2019 May; 20(4):293-305. PubMed ID: 32030088 [TBL] [Abstract][Full Text] [Related]
10. Analysis of long non-coding RNAs in epididymis of cattleyak associated with male infertility. Zhao W; Ahmed S; Ahmed S; Yangliu Y; Wang H; Cai X Theriogenology; 2021 Jan; 160():61-71. PubMed ID: 33181482 [TBL] [Abstract][Full Text] [Related]
11. Bovid microRNAs involved in the process of spermatogonia differentiation into spermatocytes. Xu C; Shah MA; Mipam T; Wu S; Yi C; Luo H; Yuan M; Chai Z; Zhao W; Cai X Int J Biol Sci; 2020; 16(2):239-250. PubMed ID: 31929752 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of spermatogenic cells from cattle, yak and cattleyak. Shah MA; Xu C; Wu S; Zhao W; Luo H; Yi C; Liu W; Cai X Anim Reprod Sci; 2018 Jun; 193():182-190. PubMed ID: 29685708 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Long Noncoding RNA and mRNA Expression Profiles of Testes with High and Low Sperm Motility in Domestic Pigeons Xu X; Tan Y; Mao H; Liu H; Dong X; Yin Z Genes (Basel); 2020 Mar; 11(4):. PubMed ID: 32218174 [TBL] [Abstract][Full Text] [Related]
14. High-throughput sequencing reveals differential expression of miRNAs in yak and cattleyak epididymis. Wang C; Hussain Solangi T; Wang H; Yang L; Adjei M; Ahmed S; Shahzad K; Zhao W; Lang X Reprod Domest Anim; 2022 Feb; 57(2):125-140. PubMed ID: 34057751 [TBL] [Abstract][Full Text] [Related]
15. Key Anti-Fibrosis Associated Long Noncoding RNAs Identified in Human Hepatic Stellate Cell via Transcriptome Sequencing Analysis. Li XQ; Ren ZX; Li K; Huang JJ; Huang ZT; Zhou TR; Cao HY; Zhang FX; Tan B Int J Mol Sci; 2018 Feb; 19(3):. PubMed ID: 29495545 [TBL] [Abstract][Full Text] [Related]
16. Identification and analysis of differentially expressed (DE) circRNA in epididymis of yak and cattleyak. Li C; Yan Y; Pan C; Adjei M; Shahzad K; Wang P; Pan M; Li K; Wang Y; Zhao W Front Vet Sci; 2023; 10():1040419. PubMed ID: 36825227 [TBL] [Abstract][Full Text] [Related]
17. F1 Male Sterility in Cattle-Yak Examined through Changes in Testis Tissue and Transcriptome Profiles. Cao M; Wang X; Guo S; Kang Y; Pei J; Guo X Animals (Basel); 2022 Oct; 12(19):. PubMed ID: 36230452 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide detection and sequence conservation analysis of long non-coding RNA during hair follicle cycle of yak. Zhang X; Bao Q; Jia C; Li C; Chang Y; Wu X; Liang C; Bao P; Yan P BMC Genomics; 2020 Oct; 21(1):681. PubMed ID: 32998696 [TBL] [Abstract][Full Text] [Related]
19. Long-stranded non-coding RNAs temporal-specific expression profiles reveal longissimus dorsi muscle development and intramuscular fat deposition in Tianzhu white yak. He Z; Wang X; Qi Y; Zhu C; Zhao Z; Zhang X; Liu X; Li S; Zhao F; Wang J; Shi B; Hu J J Anim Sci; 2023 Jan; 101():. PubMed ID: 38029315 [TBL] [Abstract][Full Text] [Related]
20. Absence of Sirtuin 1 impairs the testicular development in cattleyak by inactivating SF-1. Yin S; Qin W; Wang B; Zhou J; Yang L; Xiong X; Li J Reprod Domest Anim; 2020 Sep; 55(9):1054-1060. PubMed ID: 32497285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]