These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 34626538)
1. Cell-type modeling in spatial transcriptomics data elucidates spatially variable colocalization and communication between cell-types in mouse brain. Grisanti Canozo FJ; Zuo Z; Martin JF; Samee MAH Cell Syst; 2022 Jan; 13(1):58-70.e5. PubMed ID: 34626538 [TBL] [Abstract][Full Text] [Related]
2. Computational solutions for spatial transcriptomics. Kleino I; Frolovaitė P; Suomi T; Elo LL Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664 [TBL] [Abstract][Full Text] [Related]
3. stAPAminer: Mining Spatial Patterns of Alternative Polyadenylation for Spatially Resolved Transcriptomic Studies. Ji G; Tang Q; Zhu S; Zhu J; Ye P; Xia S; Wu X Genomics Proteomics Bioinformatics; 2023 Jun; 21(3):601-618. PubMed ID: 36669641 [TBL] [Abstract][Full Text] [Related]
4. stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics. Li C; Chan TF; Yang C; Lin Z Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37862237 [TBL] [Abstract][Full Text] [Related]
5. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information. Li H; Li H; Zhou J; Gao X Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455 [TBL] [Abstract][Full Text] [Related]
6. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering. Peng L; He X; Peng X; Li Z; Zhang L Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898 [TBL] [Abstract][Full Text] [Related]
7. Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno. Shi X; Yang Y; Ma X; Zhou Y; Guo Z; Wang C; Liu J Nucleic Acids Res; 2023 Dec; 51(22):e115. PubMed ID: 37941153 [TBL] [Abstract][Full Text] [Related]
9. Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data. Shan X; Chen J; Dong K; Zhou W; Zhang S J Comput Biol; 2022 Jul; 29(7):650-663. PubMed ID: 35727094 [TBL] [Abstract][Full Text] [Related]
10. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data. Ma Y; Liu L; Zhao Y; Hang B; Zhang Y BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049 [TBL] [Abstract][Full Text] [Related]
11. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Biancalani T; Scalia G; Buffoni L; Avasthi R; Lu Z; Sanger A; Tokcan N; Vanderburg CR; Segerstolpe Å; Zhang M; Avraham-Davidi I; Vickovic S; Nitzan M; Ma S; Subramanian A; Lipinski M; Buenrostro J; Brown NB; Fanelli D; Zhuang X; Macosko EZ; Regev A Nat Methods; 2021 Nov; 18(11):1352-1362. PubMed ID: 34711971 [TBL] [Abstract][Full Text] [Related]
12. CPPLS-MLP: a method for constructing cell-cell communication networks and identifying related highly variable genes based on single-cell sequencing and spatial transcriptomics data. Zhang T; Wu Z; Li L; Ren J; Zhang Z; Wang G Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678387 [TBL] [Abstract][Full Text] [Related]
13. Single-Cell Transcriptomics-Based Study of Transcriptional Regulatory Features in the Mouse Brain Vasculature. Lin WW; Xu LT; Chen YS; Go K; Sun C; Zhu YJ Biomed Res Int; 2021; 2021():7643209. PubMed ID: 34337051 [TBL] [Abstract][Full Text] [Related]
14. SPICEMIX enables integrative single-cell spatial modeling of cell identity. Chidester B; Zhou T; Alam S; Ma J Nat Genet; 2023 Jan; 55(1):78-88. PubMed ID: 36624346 [TBL] [Abstract][Full Text] [Related]
15. scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network. Shao X; Yang H; Zhuang X; Liao J; Yang P; Cheng J; Lu X; Chen H; Fan X Nucleic Acids Res; 2021 Dec; 49(21):e122. PubMed ID: 34500471 [TBL] [Abstract][Full Text] [Related]
16. Space: the final frontier - achieving single-cell, spatially resolved transcriptomics in plants. Gurazada SGR; Cox KL; Czymmek KJ; Meyers BC Emerg Top Life Sci; 2021 May; 5(2):179-188. PubMed ID: 33522561 [TBL] [Abstract][Full Text] [Related]
17. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Liao J; Qian J; Fang Y; Chen Z; Zhuang X; Zhang N; Shao X; Hu Y; Yang P; Cheng J; Hu Y; Yu L; Yang H; Zhang J; Lu X; Shao L; Wu D; Gao Y; Chen H; Fan X Nat Commun; 2022 Oct; 13(1):6498. PubMed ID: 36310179 [TBL] [Abstract][Full Text] [Related]
18. Integration of single-nuclei RNA-sequencing, spatial transcriptomics and histochemistry defines the complex microenvironment of NF1-associated plexiform neurofibromas. Amani V; Riemondy KA; Fu R; Griesinger AM; Grimaldo E; De Sousa GR; Gilani A; Hemenway M; Foreman NK; Donson AM; Willard N Acta Neuropathol Commun; 2023 Sep; 11(1):158. PubMed ID: 37770931 [TBL] [Abstract][Full Text] [Related]
19. STellaris: a web server for accurate spatial mapping of single cells based on spatial transcriptomics data. Li X; Xiao C; Qi J; Xue W; Xu X; Mu Z; Zhang J; Li CY; Ding W Nucleic Acids Res; 2023 Jul; 51(W1):W560-W568. PubMed ID: 37224539 [TBL] [Abstract][Full Text] [Related]
20. SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network. Wang Y; Zhou F; Guan J Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38950180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]