BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34626823)

  • 1. PROTREC: A probability-based approach for recovering missing proteins based on biological networks.
    Kong W; Wong BJH; Gao H; Guo T; Liu X; Du X; Wong L; Goh WWB
    J Proteomics; 2022 Jan; 250():104392. PubMed ID: 34626823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the PROTREC network-based missing protein prediction algorithm.
    Wu W; Huang Z; Kong W; Peng H; Goh WWB
    Proteomics; 2024 Jan; 24(1-2):e2200332. PubMed ID: 37876146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic datasets of HeLa and SiHa cell lines acquired by DDA-PASEF and diaPASEF.
    Huang Z; Kong W; Wong BJ; Gao H; Guo T; Liu X; Du X; Wong L; Goh WWB
    Data Brief; 2022 Apr; 41():107919. PubMed ID: 35198691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated proteomic data analysis workflow for mass spectrometry.
    Pendarvis K; Kumar R; Burgess SC; Nanduri B
    BMC Bioinformatics; 2009 Oct; 10 Suppl 11(Suppl 11):S17. PubMed ID: 19811682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving missing protein problems using functional class scoring.
    Wong BJH; Kong W; Wong L; Goh WWB
    Sci Rep; 2022 Jul; 12(1):11358. PubMed ID: 35790756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating network-based missing protein prediction using
    Goh WWB; Kong W; Wong L
    J Bioinform Comput Biol; 2023 Feb; 21(1):2350005. PubMed ID: 36891972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deeper investigation into the utility of functional class scoring in missing protein prediction from proteomics data.
    Zhao Y; Sue AC; Goh WWB
    J Bioinform Comput Biol; 2019 Apr; 17(2):1950013. PubMed ID: 31057071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy-FishNET: a highly reproducible protein complex-based approach for feature selection in comparative proteomics.
    Goh WW
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):67. PubMed ID: 28117654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses.
    Wang S; Li W; Hu L; Cheng J; Yang H; Liu Y
    Nucleic Acids Res; 2020 Aug; 48(14):e83. PubMed ID: 32526036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Clinical Proteomics via Analysis Based on Biological Complexes: A Tale of Five Paradigms.
    Goh WW; Wong L
    J Proteome Res; 2016 Sep; 15(9):3167-79. PubMed ID: 27454466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROCS: a reproducibility index and confidence score for interaction proteomics studies.
    Dazard JE; Saha S; Ewing RM
    BMC Bioinformatics; 2012 Jun; 13():128. PubMed ID: 22682516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linear programming model for protein inference problem in shotgun proteomics.
    Huang T; He Z
    Bioinformatics; 2012 Nov; 28(22):2956-62. PubMed ID: 22954624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational and Mass-Spectrometry-Based Workflow for the Discovery and Validation of Missing Human Proteins: Application to Chromosomes 2 and 14.
    Carapito C; Lane L; Benama M; Opsomer A; Mouton-Barbosa E; Garrigues L; Gonzalez de Peredo A; Burel A; Bruley C; Gateau A; Bouyssié D; Jaquinod M; Cianferani S; Burlet-Schiltz O; Van Dorsselaer A; Garin J; Vandenbrouck Y
    J Proteome Res; 2015 Sep; 14(9):3621-34. PubMed ID: 26132440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MUMAL2: Improving sensitivity in shotgun proteomics using cost sensitive artificial neural networks and a threshold selector algorithm.
    Cerqueira FR; Ricardo AM; de Paiva Oliveira A; Graber A; Baumgartner C
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):472. PubMed ID: 28105913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting differential protein expression in large-scale population proteomics.
    Ryu SY; Qian WJ; Camp DG; Smith RD; Tompkins RG; Davis RW; Xiao W
    Bioinformatics; 2014 Oct; 30(19):2741-6. PubMed ID: 24928210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting differential and correlated protein expression in label-free shotgun proteomics.
    Zhang B; VerBerkmoes NC; Langston MA; Uberbacher E; Hettich RL; Samatova NF
    J Proteome Res; 2006 Nov; 5(11):2909-18. PubMed ID: 17081042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Feature Detection for Data-Dependent Shotgun Proteomics.
    Weisser H; Choudhary JS
    J Proteome Res; 2017 Aug; 16(8):2964-2974. PubMed ID: 28673088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic acid-treated mice.
    Goh WW; Sergot MJ; Sng JC; Wong L
    J Proteome Res; 2013 May; 12(5):2116-27. PubMed ID: 23557376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized method for probability-based peptide and protein identification from tandem mass spectrometry data and sequence database searching.
    Ramos-Fernández A; Paradela A; Navajas R; Albar JP
    Mol Cell Proteomics; 2008 Sep; 7(9):1748-54. PubMed ID: 18515861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PSEA-Quant: a protein set enrichment analysis on label-free and label-based protein quantification data.
    Lavallée-Adam M; Rauniyar N; McClatchy DB; Yates JR
    J Proteome Res; 2014 Dec; 13(12):5496-509. PubMed ID: 25177766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.