These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34626823)

  • 1. PROTREC: A probability-based approach for recovering missing proteins based on biological networks.
    Kong W; Wong BJH; Gao H; Guo T; Liu X; Du X; Wong L; Goh WWB
    J Proteomics; 2022 Jan; 250():104392. PubMed ID: 34626823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the PROTREC network-based missing protein prediction algorithm.
    Wu W; Huang Z; Kong W; Peng H; Goh WWB
    Proteomics; 2024 Jan; 24(1-2):e2200332. PubMed ID: 37876146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic datasets of HeLa and SiHa cell lines acquired by DDA-PASEF and diaPASEF.
    Huang Z; Kong W; Wong BJ; Gao H; Guo T; Liu X; Du X; Wong L; Goh WWB
    Data Brief; 2022 Apr; 41():107919. PubMed ID: 35198691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated proteomic data analysis workflow for mass spectrometry.
    Pendarvis K; Kumar R; Burgess SC; Nanduri B
    BMC Bioinformatics; 2009 Oct; 10 Suppl 11(Suppl 11):S17. PubMed ID: 19811682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving missing protein problems using functional class scoring.
    Wong BJH; Kong W; Wong L; Goh WWB
    Sci Rep; 2022 Jul; 12(1):11358. PubMed ID: 35790756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating network-based missing protein prediction using
    Goh WWB; Kong W; Wong L
    J Bioinform Comput Biol; 2023 Feb; 21(1):2350005. PubMed ID: 36891972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deeper investigation into the utility of functional class scoring in missing protein prediction from proteomics data.
    Zhao Y; Sue AC; Goh WWB
    J Bioinform Comput Biol; 2019 Apr; 17(2):1950013. PubMed ID: 31057071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy-FishNET: a highly reproducible protein complex-based approach for feature selection in comparative proteomics.
    Goh WW
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):67. PubMed ID: 28117654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses.
    Wang S; Li W; Hu L; Cheng J; Yang H; Liu Y
    Nucleic Acids Res; 2020 Aug; 48(14):e83. PubMed ID: 32526036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Clinical Proteomics via Analysis Based on Biological Complexes: A Tale of Five Paradigms.
    Goh WW; Wong L
    J Proteome Res; 2016 Sep; 15(9):3167-79. PubMed ID: 27454466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROCS: a reproducibility index and confidence score for interaction proteomics studies.
    Dazard JE; Saha S; Ewing RM
    BMC Bioinformatics; 2012 Jun; 13():128. PubMed ID: 22682516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linear programming model for protein inference problem in shotgun proteomics.
    Huang T; He Z
    Bioinformatics; 2012 Nov; 28(22):2956-62. PubMed ID: 22954624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational and Mass-Spectrometry-Based Workflow for the Discovery and Validation of Missing Human Proteins: Application to Chromosomes 2 and 14.
    Carapito C; Lane L; Benama M; Opsomer A; Mouton-Barbosa E; Garrigues L; Gonzalez de Peredo A; Burel A; Bruley C; Gateau A; Bouyssié D; Jaquinod M; Cianferani S; Burlet-Schiltz O; Van Dorsselaer A; Garin J; Vandenbrouck Y
    J Proteome Res; 2015 Sep; 14(9):3621-34. PubMed ID: 26132440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MUMAL2: Improving sensitivity in shotgun proteomics using cost sensitive artificial neural networks and a threshold selector algorithm.
    Cerqueira FR; Ricardo AM; de Paiva Oliveira A; Graber A; Baumgartner C
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):472. PubMed ID: 28105913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting differential protein expression in large-scale population proteomics.
    Ryu SY; Qian WJ; Camp DG; Smith RD; Tompkins RG; Davis RW; Xiao W
    Bioinformatics; 2014 Oct; 30(19):2741-6. PubMed ID: 24928210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting differential and correlated protein expression in label-free shotgun proteomics.
    Zhang B; VerBerkmoes NC; Langston MA; Uberbacher E; Hettich RL; Samatova NF
    J Proteome Res; 2006 Nov; 5(11):2909-18. PubMed ID: 17081042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Feature Detection for Data-Dependent Shotgun Proteomics.
    Weisser H; Choudhary JS
    J Proteome Res; 2017 Aug; 16(8):2964-2974. PubMed ID: 28673088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic acid-treated mice.
    Goh WW; Sergot MJ; Sng JC; Wong L
    J Proteome Res; 2013 May; 12(5):2116-27. PubMed ID: 23557376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized method for probability-based peptide and protein identification from tandem mass spectrometry data and sequence database searching.
    Ramos-Fernández A; Paradela A; Navajas R; Albar JP
    Mol Cell Proteomics; 2008 Sep; 7(9):1748-54. PubMed ID: 18515861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PSEA-Quant: a protein set enrichment analysis on label-free and label-based protein quantification data.
    Lavallée-Adam M; Rauniyar N; McClatchy DB; Yates JR
    J Proteome Res; 2014 Dec; 13(12):5496-509. PubMed ID: 25177766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.