BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34626928)

  • 1. Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel.
    Zhang L; Wang Y; Wei Y; An D
    Food Chem; 2022 Feb; 370():131047. PubMed ID: 34626928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of unsound wheat kernels based on deep convolutional generative adversarial network and near-infrared hyperspectral imaging technology.
    Li H; Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120722. PubMed ID: 34902690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network.
    Zhang L; An D; Wei Y; Liu J; Wu J
    Food Chem; 2022 Nov; 395():133563. PubMed ID: 35763927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of hardness for maize kernels based on hyperspectral imaging.
    Qiao M; Xu Y; Xia G; Su Y; Lu B; Gao X; Fan H
    Food Chem; 2022 Jan; 366():130559. PubMed ID: 34289440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module.
    Yang D; Zhou Y; Jie Y; Li Q; Shi T
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124166. PubMed ID: 38493512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of textural and spectral features of Raman hyperspectral imaging for quantitative determination of a single maize kernel mildew coupled with chemometrics.
    Long Y; Huang W; Wang Q; Fan S; Tian X
    Food Chem; 2022 Mar; 372():131246. PubMed ID: 34818727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Measuring the Moisture Content in Maize Kernel Based on Hyperspctral Image of Embryo Region].
    Tian X; Huang WQ; Li JB; Fan SX; Zhang BH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3237-42. PubMed ID: 30246759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection.
    Zhou Q; Huang W; Liang D; Tian X
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Feng X; He Y
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30477266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Nondestructive identification of different oil content maize kernels by near-infrared spectra].
    Zhang Y; Zhang LD; Bai QL; Chen SJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):686-9. PubMed ID: 19455800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel high-throughput hyperspectral scanner and analytical methods for predicting maize kernel composition and physical traits.
    Varela JI; Miller ND; Infante V; Kaeppler SM; de Leon N; Spalding EP
    Food Chem; 2022 Oct; 391():133264. PubMed ID: 35643019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of blended corn-olive oil based on Raman spectroscopy and one-dimensional convolutional neural network.
    Wu X; Gao S; Niu Y; Zhao Z; Ma R; Xu B; Liu H; Zhang Y
    Food Chem; 2022 Aug; 385():132655. PubMed ID: 35279503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting.
    Zhou Q; Huang W; Tian X; Yang Y; Liang D
    J Sci Food Agric; 2021 Aug; 101(11):4532-4542. PubMed ID: 33452811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
    Janni J; Weinstock BA; Hagen L; Wright S
    Appl Spectrosc; 2008 Apr; 62(4):423-6. PubMed ID: 18416901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging.
    Cheng J; Sun J; Yao K; Xu M; Dai C
    Meat Sci; 2023 Jul; 201():109196. PubMed ID: 37087873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis.
    Weinstock BA; Janni J; Hagen L; Wright S
    Appl Spectrosc; 2006 Jan; 60(1):9-16. PubMed ID: 16454902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application and prospects of hyperspectral imaging and deep learning in traditional Chinese medicine in context of AI and industry 4.0].
    Yi T; Lin C; En-Ci J; Ji-Zhong Y
    Zhongguo Zhong Yao Za Zhi; 2020 Nov; 45(22):5438-5442. PubMed ID: 33350203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds.
    Zhang X; Liu F; He Y; Li X
    Sensors (Basel); 2012 Dec; 12(12):17234-46. PubMed ID: 23235456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.