BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34626963)

  • 1. A cation exchange strategy to construct Rod-shell CdS/Cu
    Guo Y; Liang Z; Xue Y; Wang X; Zhang X; Tian J
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):158-163. PubMed ID: 34626963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general strategy for the enhanced H
    An S; Zhang L; Ding X; Xue Y; Tian J; Qin Y; You J; Wang X; Zhang H
    J Colloid Interface Sci; 2024 Jun; 664():848-856. PubMed ID: 38493650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide-copper sulfide heterostructured nanorods.
    Zheng H; Sadtler B; Habenicht C; Freitag B; Alivisatos AP; Kisielowski C
    Ultramicroscopy; 2013 Nov; 134():207-13. PubMed ID: 23830376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterostructured WS
    Reddy DA; Park H; Ma R; Kumar DP; Lim M; Kim TK
    ChemSusChem; 2017 Apr; 10(7):1563-1570. PubMed ID: 28121391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing conducting polymers@cadmium sulfide core-shell nanorods for highly improved photocatalytic hydrogen production.
    Wang C; Hu ZY; Zhao H; Yu W; Wu S; Liu J; Chen L; Li Y; Su BL
    J Colloid Interface Sci; 2018 Jul; 521():1-10. PubMed ID: 29544116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of one-dimensional CdS@TiO₂ core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO₂ shell.
    Liu S; Zhang N; Tang ZR; Xu YJ
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6378-85. PubMed ID: 23131118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the photovoltaic properties of Ga-doped CdS-Cu
    Lu MY; Hong MH; Ruan YM; Lu MP
    Chem Commun (Camb); 2019 May; 55(37):5351-5354. PubMed ID: 30994633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-Shell Structural CdS@SnO₂ Nanorods with Excellent Visible-Light Photocatalytic Activity for the Selective Oxidation of Benzyl Alcohol to Benzaldehyde.
    Liu Y; Zhang P; Tian B; Zhang J
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13849-58. PubMed ID: 26057028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble metal-free 0D-1D NiS
    Meng S; Cui Y; Wang H; Zheng X; Fu X; Chen S
    Dalton Trans; 2018 Sep; 47(36):12671-12683. PubMed ID: 30151533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photocatalytic H
    Irfan RM; Tahir MH; Khan SA; Shaheen MA; Ahmed G; Iqbal S
    J Colloid Interface Sci; 2019 Dec; 557():1-9. PubMed ID: 31505332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ growth of 1D/2D CdS-Bi
    Kadam AN; Bathula C; Lee SW
    Chemosphere; 2021 Jul; 275():130086. PubMed ID: 33677274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform H-CdS@NiCoP core-shell nanosphere for highly efficient visible-light-driven photocatalytic H
    Deng L; Fang N; Wu S; Shu S; Chu Y; Guo J; Cen W
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2730-2739. PubMed ID: 34799046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous tungsten phosphosulphide-modified CdS nanorods as a highly efficient electron-cocatalyst for enhanced photocatalytic hydrogen production.
    Jian Q; Hao X; Jin Z; Ma Q
    Phys Chem Chem Phys; 2020 Jan; 22(4):1932-1943. PubMed ID: 31912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-Shell CdS-Cu₂S Nanorod Array Solar Cells.
    Wong AB; Brittman S; Yu Y; Dasgupta NP; Yang P
    Nano Lett; 2015 Jun; 15(6):4096-101. PubMed ID: 25993088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving Long-Lived Charge Separated State through Ultrafast Interfacial Hole Transfer in Redox Sites-Isolated CdS Nanorods for Enhanced Photocatalysis.
    Jiang D; Li Z; Li H; Cheng Y; Du H; Zhu C; Meng L; Fang Y; Zhao C; Lou Z; Lu Z; Yuan Y
    Small; 2024 Jun; 20(26):e2310414. PubMed ID: 38294968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing CdS Mesoporous Networks on Co-C@Co
    Reddy DA; Park H; Gopannagari M; Kim EH; Lee S; Kumar DP; Kim TK
    ChemSusChem; 2018 Jan; 11(1):245-253. PubMed ID: 28972688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Growth and Bandstructure Properties of One Dimensional Cadmium Sulfide Nanorods for Visible Photocatalytic Hydrogen Evolution Reaction.
    Chava RK; Son N; Kim YS; Kang M
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32230877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing a MoS₂ QDs/CdS Core/Shell Flowerlike Nanosphere Hierarchical Heterostructure for the Enhanced Stability and Photocatalytic Activity.
    Liang S; Zhou Z; Wu X; Zhu S; Bi J; Zhou L; Liu M; Wu L
    Molecules; 2016 Feb; 21(2):. PubMed ID: 26891284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.