These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34626963)

  • 41. CdS Nanowires Decorated with Ultrathin MoS2 Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution.
    He J; Chen L; Wang F; Liu Y; Chen P; Au CT; Yin SF
    ChemSusChem; 2016 Mar; 9(6):624-30. PubMed ID: 26879708
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-Dimensional Structure of PANI/CdS NRs-SiO₂ Hydrogel for Photocatalytic Hydrogen Evolution with High Activity and Stability.
    Lu J; Zhang X; Gao H; Cui W
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30871209
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystalline CdS/MoS
    Jiang S; Hu Q; Xu M; Hu S; Shi XC; Ding R; Tremblay PL; Zhang T
    Carbohydr Polym; 2020 Dec; 250():116909. PubMed ID: 33049884
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photocatalytic Dehydrogenation of Formic Acid on CdS Nanorods through Ni and Co Redox Mediation under Mild Conditions.
    Nasir JA; Hafeez M; Arshad M; Ali NZ; Teixeira IF; McPherson I; Zia-Ur-Rehman ; Khan MA
    ChemSusChem; 2018 Aug; 11(15):2587-2592. PubMed ID: 29847705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced photocatalytic H2 production on CdS nanorods with simple molecular bidentate cobalt complexes as cocatalysts under visible light.
    Irfan RM; Jiang D; Sun Z; Lu D; Du P
    Dalton Trans; 2016 Aug; 45(32):12897-905. PubMed ID: 27476445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unique CdS@MoS
    Kadam SR; Gosavi SW; Kale BB; Suzuki N; Terashima C; Fujishima A
    Sci Rep; 2019 Aug; 9(1):12036. PubMed ID: 31427636
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of CdS Nanostructures by Thermal Decomposition of Aminocaproic Acid-Mixed Cd-Thiourea Complex Precursor: Structural, Optical and Photocatalytic Characterization.
    Patel JD; Mighri F; Ajji A; Chaudhuri TK
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2733-41. PubMed ID: 26353487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p-n heterojunction for significantly enhanced photocatalytic H
    Sun G; Xiao B; Shi JW; Mao S; He C; Ma D; Cheng Y
    J Colloid Interface Sci; 2021 Aug; 596():215-224. PubMed ID: 33845229
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production on CdS/Cu
    Chu J; Han X; Yu Z; Du Y; Song B; Xu P
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20404-20411. PubMed ID: 29847085
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel α-Fe2O3/CdS cornlike nanorods with enhanced photocatalytic performance.
    Shi Y; Li H; Wang L; Shen W; Chen H
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4800-6. PubMed ID: 22894770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An unconventional outer-to-inner synthesis strategy for core (Au)-shell nanostructures with photo-electrochemical enhancement.
    Zhang Z; Baek M; Song H; Yong K
    Nanoscale; 2017 Apr; 9(16):5342-5351. PubMed ID: 28401236
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient Extraction of Trapped Holes from Colloidal CdS Nanorods.
    Wu K; Du Y; Tang H; Chen Z; Lian T
    J Am Chem Soc; 2015 Aug; 137(32):10224-30. PubMed ID: 26221916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CdSe-sensitized branched CdS hierarchical nanostructures for efficient photoelectrochemical solar hydrogen generation.
    Han Z; Wang M; Chen X; Shen S
    Phys Chem Chem Phys; 2016 Apr; 18(16):11460-6. PubMed ID: 27058590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Au/CdS Core-Shell Sensitized Actinomorphic Flower-Like ZnO Nanorods for Enhanced Photocatalytic Water Splitting Performance.
    Li Y; Liu T; Feng S; Yang W; Zhu Y; Zhao Y; Liu Z; Yang H; Fu W
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33477337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrothermal Cation Exchange Enabled Gradual Evolution of Au@ZnS-AgAuS Yolk-Shell Nanocrystals and Their Visible Light Photocatalytic Applications.
    Feng J; Liu J; Cheng X; Liu J; Xu M; Zhang J
    Adv Sci (Weinh); 2018 Jan; 5(1):1700376. PubMed ID: 29375968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A facile template-free approach for the large-scale solid-phase synthesis of CdS nanostructures and their excellent photocatalytic performance.
    Apte SK; Garaje SN; Mane GP; Vinu A; Naik SD; Amalnerkar DP; Kale BB
    Small; 2011 Apr; 7(7):957-64. PubMed ID: 21387556
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of CdMoO4@CdS core-shell hollow superstructures as high performance visible-light driven photocatalysts.
    Madhusudan P; Zhang J; Cheng B; Yu J
    Phys Chem Chem Phys; 2015 Jun; 17(23):15339-47. PubMed ID: 25998376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Solution-Processed CdS/Cu
    Xiong Z; Cai Y; Ren X; Cao B; Liu J; Huo Z; Tang J
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32424-32429. PubMed ID: 28901138
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production.
    Yang G; Yan W; Zhang Q; Shen S; Ding S
    Nanoscale; 2013 Dec; 5(24):12432-9. PubMed ID: 24166349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile decoration of Au nanoparticles on CdS nanorods by polyoxometalate with enhanced photocatalytic activities toward hydrogen evolution.
    Xing X; Liu R; Wang Z; Ren B; Jiang Z; Zhao H; Cao H; Zhang G; Zhang T
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4616-21. PubMed ID: 23901482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.