These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34626981)

  • 1. Numerical investigation of the respective roles of cohesive and hydrodynamic forces in aggregate restructuring under shear flow.
    Saxena A; Kroll-Rabotin JS; Sanders RS
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):355-365. PubMed ID: 34626981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restructuring of colloidal aggregates in shear flows and limitations of the free-draining approximation.
    Becker V; Schlauch E; Behr M; Briesen H
    J Colloid Interface Sci; 2009 Nov; 339(2):362-72. PubMed ID: 19726052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic stress on small colloidal aggregates in shear flow using Stokesian dynamics.
    Seto R; Botet R; Briesen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041405. PubMed ID: 22181144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and modeling study of breakage and restructuring of open and dense colloidal aggregates.
    Harshe YM; Lattuada M; Soos M
    Langmuir; 2011 May; 27(10):5739-52. PubMed ID: 21506535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakage rate of colloidal aggregates in shear flow through stokesian dynamics.
    Harshe YM; Lattuada M
    Langmuir; 2012 Jan; 28(1):283-92. PubMed ID: 22122803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic forces and critical stresses in low-density aggregates under shear flow.
    Vanni M; Gastaldi A
    Langmuir; 2011 Nov; 27(21):12822-33. PubMed ID: 21899341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian dynamics simulations of shear-induced aggregation of charged colloidal particles in the presence of hydrodynamic interactions.
    Lorenzo T; Marco L
    J Colloid Interface Sci; 2022 Oct; 624():637-649. PubMed ID: 35696787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restructuring of colloidal aggregates in shear flow: coupling interparticle contact models with Stokesian dynamics.
    Seto R; Botet R; Auernhammer GK; Briesen H
    Eur Phys J E Soft Matter; 2012 Dec; 35(12):9805. PubMed ID: 23229757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of 2-D colloidal particle aggregates held against flow stress in an ultrasound trap.
    Kuznetsova LA; Bazou D; Coakley WT
    Langmuir; 2007 Mar; 23(6):3009-16. PubMed ID: 17286416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local Concentrating, Not Shear Stress, That May Lead to Possible Instability of Protein Molecules During Syringe Injection: A Fluid Dynamic Study with Two-Phase Flow Model.
    Xing L; Li Y; Li T
    PDA J Pharm Sci Technol; 2019; 73(3):260-275. PubMed ID: 30651339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hydrodynamics of colloidal gelation.
    Varga Z; Wang G; Swan J
    Soft Matter; 2015 Dec; 11(46):9009-19. PubMed ID: 26406284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A master curve for the onset of shear induced restructuring of fractal colloidal aggregates.
    Becker V; Briesen H
    J Colloid Interface Sci; 2010 Jun; 346(1):32-6. PubMed ID: 20202643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force evaluations in lattice Boltzmann simulations with moving boundaries in two dimensions.
    Li H; Lu X; Fang H; Qian Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026701. PubMed ID: 15447614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength Deterioration of Nonfractal Particle Aggregates in Simple Shear Flow.
    Horii K; Yamada R; Harada S
    Langmuir; 2015 Jul; 31(29):7909-18. PubMed ID: 26153265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a lattice Boltzmann-immersed boundary method for fluid-filament dynamics and flow sensing.
    O Connor J; Revell A; Mandal P; Day P
    J Biomech; 2016 Jul; 49(11):2143-2151. PubMed ID: 26718062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population balance modelling of particle flocculation with attention to aggregate restructuring and permeability.
    Jeldres RI; Concha F; Toledo PG
    Adv Colloid Interface Sci; 2015 Oct; 224():62-71. PubMed ID: 26253811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the potential well on the breakage rate of colloidal aggregates in simple shear and uniaxial extensional flows.
    Ren Z; Harshe YM; Lattuada M
    Langmuir; 2015 Jun; 31(21):5712-21. PubMed ID: 25941836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.