These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3462723)

  • 1. Chemical reactivity at an antibody binding site elicited by mechanistic design of a synthetic antigen.
    Tramontano A; Janda KD; Lerner RA
    Proc Natl Acad Sci U S A; 1986 Sep; 83(18):6736-40. PubMed ID: 3462723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and selective p-nitrophenyl-ester-hydrolyzing antibodies elicited by a p-nitrobenzyl phosphonate hapten.
    Tawfik DS; Lindner AB; Chap R; Eshhar Z; Green BS
    Eur J Biochem; 1997 Mar; 244(2):619-26. PubMed ID: 9119032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic antibodies.
    Tramontano A; Janda KD; Lerner RA
    Science; 1986 Dec; 234(4783):1566-70. PubMed ID: 3787261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis.
    Tantillo DJ; Houk KN
    J Comput Chem; 2002 Jan; 23(1):84-95. PubMed ID: 11913392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic studies of a tyrosine-dependent catalytic antibody.
    Martin MT; Napper AD; Schultz PG; Rees AR
    Biochemistry; 1991 Oct; 30(40):9757-61. PubMed ID: 1911763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a catalytic antibody for stereoselective ester hydrolysis--a catalytic residue and mode of product inhibition.
    Nakatani T; Umeshita R; Hiratake J; Shinzaki A; Suzuki T; Nakajima H; Oda J
    Bioorg Med Chem; 1994 Jun; 2(6):457-68. PubMed ID: 8000868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new strategy for the generation of catalytic antibodies.
    Shokat KM; Leumann CJ; Sugasawara R; Schultz PG
    Nature; 1989 Mar; 338(6212):269-71. PubMed ID: 2922053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple method for selecting catalytic monoclonal antibodies that exhibit turnover and specificity.
    Tawfik DS; Zemel RR; Arad-Yellin R; Green BS; Eshhar Z
    Biochemistry; 1990 Oct; 29(42):9916-21. PubMed ID: 2271630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PAPAIN-CATALYSED HYDROLYSIS OF SOME HIPPURIC ESTERS. A NEW MECHANISM FOR PAPAIN-CATALYSED HYDROLYSIS.
    LOWE G; WILLIAMS A
    Biochem J; 1965 Jul; 96(1):199-204. PubMed ID: 14346990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody-catalyzed reversal of chemoselectivity.
    Sinha SC; Keinan E; Reymond JL
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11910-3. PubMed ID: 8265647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids.
    Hirschmann R; Smith AB; Taylor CM; Benkovic PA; Taylor SD; Yager KM; Sprengeler PA; Benkovic SJ
    Science; 1994 Jul; 265(5169):234-7. PubMed ID: 8023141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of chiral and racemic phosphonate-based haptens for the induction of aldolase catalytic antibodies.
    Mu YQ; Gibbs RA
    Bioorg Med Chem; 1997 Jul; 5(7):1327-37. PubMed ID: 9377093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement in hydrolytic antibody activity by change in haptenic structure from phosphate to phosphonate with retention of a common leaving-group determinant: evidence for the 'flexibility' hypothesis.
    Gul S; Sonkaria S; Pinitglang S; Florez-Alvarez J; Hussain S; Thomas EW; Ostler EL; Gallacher G; Resmini M; Brocklehurst K
    Biochem J; 2003 Dec; 376(Pt 3):813-21. PubMed ID: 12946271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantiomeric specificity at the deacylation process of tryptic catalysis.
    Tanizawa K; Yamada H; Kanaoka Y
    Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). I. Evidence for an essential carboxylate and a reactive histidine residue in a single catalytic center.
    Keresztessy Z; Kiss L; Hughes MA
    Arch Biochem Biophys; 1994 Oct; 314(1):142-52. PubMed ID: 7944386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for 'lock and key' character in an anti-phosphonate hydrolytic antibody catalytic site augmented by non-reaction centre recognition: variation in substrate selectivity between an anti-phosphonate antibody, an anti-phosphate antibody and two hydrolytic enzymes.
    Sonkaria S; Boucher G; Flórez-Olvarez J; Said B; Hussain S; Ostler EL; Gul S; Thomas EW; Resmini M; Gallacher G; Brocklehurst K
    Biochem J; 2004 Jul; 381(Pt 1):125-30. PubMed ID: 15053743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I
    J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient antibody-catalyzed aminoacylation reaction.
    Jacobsen JR; Prudent JR; Kochersperger L; Yonkovich S; Schultz PG
    Science; 1992 Apr; 256(5055):365-7. PubMed ID: 1566082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of the hydrolysis of depsipeptides catalyzed by the beta-lactamase of Enterobacter cloacae P99.
    Xu Y; Soto G; Hirsch KR; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3595-603. PubMed ID: 8639511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.