These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 34627250)
1. Metabolic engineering design to enhance (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis based on flux balance analysis. Vikromvarasiri N; Shirai T; Kondo A Microb Cell Fact; 2021 Oct; 20(1):196. PubMed ID: 34627250 [TBL] [Abstract][Full Text] [Related]
2. Investigation of two metabolic engineering approaches for (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis. Vikromvarasiri N; Noda S; Shirai T; Kondo A J Biol Eng; 2023 Jan; 17(1):3. PubMed ID: 36627686 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine. Meng W; Wang R; Xiao D Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762 [TBL] [Abstract][Full Text] [Related]
4. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis. Białkowska AM; Jędrzejczak-Krzepkowska M; Gromek E; Krysiak J; Sikora B; Kalinowska H; Kubik C; Schütt F; Turkiewicz M Appl Microbiol Biotechnol; 2016 Mar; 100(6):2663-76. PubMed ID: 26590588 [TBL] [Abstract][Full Text] [Related]
5. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli. de Oliveira RR; Nicholson WL Appl Microbiol Biotechnol; 2016 Jan; 100(2):719-28. PubMed ID: 26454865 [TBL] [Abstract][Full Text] [Related]
6. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. Hao T; Han B; Ma H; Fu J; Wang H; Wang Z; Tang B; Chen T; Zhao X Mol Biosyst; 2013 Aug; 9(8):2034-44. PubMed ID: 23666098 [TBL] [Abstract][Full Text] [Related]
7. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Ng CY; Jung MY; Lee J; Oh MK Microb Cell Fact; 2012 May; 11():68. PubMed ID: 22640729 [TBL] [Abstract][Full Text] [Related]
8. Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method. Zhang X; Han R; Bao T; Zhao X; Li X; Zhu M; Yang T; Xu M; Shao M; Zhao Y; Rao Z Microb Cell Fact; 2019 Aug; 18(1):128. PubMed ID: 31387595 [TBL] [Abstract][Full Text] [Related]
9. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses. Deshmukh AN; Nipanikar-Gokhale P; Jain R Appl Biochem Biotechnol; 2016 May; 179(2):321-31. PubMed ID: 26825987 [TBL] [Abstract][Full Text] [Related]
10. Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Biswas R; Yamaoka M; Nakayama H; Kondo T; Yoshida K; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2012 May; 94(3):651-8. PubMed ID: 22361854 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous production of poly-γ-glutamic acid and 2,3-butanediol by a newly isolated Bacillus subtilis CS13. Wang D; Kim H; Lee S; Kim DH; Joe MH Appl Microbiol Biotechnol; 2020 Aug; 104(16):7005-7021. PubMed ID: 32642915 [TBL] [Abstract][Full Text] [Related]
12. Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production. Park JM; Song H; Lee HJ; Seung D Microb Cell Fact; 2013 Feb; 12():20. PubMed ID: 23432904 [TBL] [Abstract][Full Text] [Related]
13. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Kim SJ; Seo SO; Park YC; Jin YS; Seo JH J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Wang M; Fu J; Zhang X; Chen T Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279 [TBL] [Abstract][Full Text] [Related]
15. Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Yang T; Rao Z; Zhang X; Xu M; Xu Z; Yang ST Microb Cell Fact; 2015 Aug; 14():122. PubMed ID: 26296537 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Fu J; Huo G; Feng L; Mao Y; Wang Z; Ma H; Chen T; Zhao X Biotechnol Biofuels; 2016; 9():90. PubMed ID: 27099629 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production. Park JM; Rathnasingh C; Song H J Ind Microbiol Biotechnol; 2017 Mar; 44(3):431-441. PubMed ID: 28040869 [TBL] [Abstract][Full Text] [Related]
18. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Liang K; Shen CR Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827 [TBL] [Abstract][Full Text] [Related]
19. High production of acetoin from glycerol by Bacillus subtilis 35. Tsigoriyna L; Petrova P; Petrov K Appl Microbiol Biotechnol; 2023 Jan; 107(1):175-185. PubMed ID: 36454254 [TBL] [Abstract][Full Text] [Related]
20. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Fu J; Wang Z; Chen T; Liu W; Shi T; Wang G; Tang YJ; Zhao X Biotechnol Bioeng; 2014 Oct; 111(10):2126-31. PubMed ID: 24788512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]