BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34627377)

  • 1. Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae.
    Martin H; Doumic M; Teixeira MT; Xu Z
    Cell Biosci; 2021 Oct; 11(1):180. PubMed ID: 34627377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages.
    Xu Z; Fallet E; Paoletti C; Fehrmann S; Charvin G; Teixeira MT
    Nat Commun; 2015 Jul; 6():7680. PubMed ID: 26158780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability.
    Coutelier H; Xu Z; Morisse MC; Lhuillier-Akakpo M; Pelet S; Charvin G; Dubrana K; Teixeira MT
    Genes Dev; 2018 Dec; 32(23-24):1499-1513. PubMed ID: 30463903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae as a Model to Study Replicative Senescence Triggered by Telomere Shortening.
    Teixeira MT
    Front Oncol; 2013; 3():101. PubMed ID: 23638436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The asymmetry of telomere replication contributes to replicative senescence heterogeneity.
    Bourgeron T; Xu Z; Doumic M; Teixeira MT
    Sci Rep; 2015 Oct; 5():15326. PubMed ID: 26468778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The length of the shortest telomere as the major determinant of the onset of replicative senescence.
    Xu Z; Duc KD; Holcman D; Teixeira MT
    Genetics; 2013 Aug; 194(4):847-57. PubMed ID: 23733785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subtelomeric region affects telomerase-negative replicative senescence in Saccharomyces cerevisiae.
    Jolivet P; Serhal K; Graf M; Eberhard S; Xu Z; Luke B; Teixeira MT
    Sci Rep; 2019 Feb; 9(1):1845. PubMed ID: 30755624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple genetic pathways regulate replicative senescence in telomerase-deficient yeast.
    Ballew BJ; Lundblad V
    Aging Cell; 2013 Aug; 12(4):719-27. PubMed ID: 23672410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of initial telomere length distribution on senescence onset and heterogeneity.
    Eugène S; Bourgeron T; Xu Z
    J Theor Biol; 2017 Jan; 413():58-65. PubMed ID: 27864096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication stress as a source of telomere recombination during replicative senescence in Saccharomyces cerevisiae.
    Simon MN; Churikov D; Géli V
    FEMS Yeast Res; 2016 Nov; 16(7):. PubMed ID: 27683094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rap1p-telomere complex does not determine the replicative capacity of telomerase-deficient yeast.
    Smolikov S; Krauskopf A
    Mol Cell Biol; 2003 Dec; 23(23):8729-39. PubMed ID: 14612413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The many types of heterogeneity in replicative senescence.
    Xu Z; Teixeira MT
    Yeast; 2019 Nov; 36(11):637-648. PubMed ID: 31306505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA.
    Sozou PD; Kirkwood TB
    J Theor Biol; 2001 Dec; 213(4):573-86. PubMed ID: 11742526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of telomeric DNA prior to replicative senescence.
    Lansdorp PM
    Mech Ageing Dev; 2000 Sep; 118(1-2):23-34. PubMed ID: 10989122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mating type influences chromosome loss and replicative senescence in telomerase-deficient budding yeast by Dnl4-dependent telomere fusion.
    Meyer DH; Bailis AM
    Mol Microbiol; 2008 Sep; 69(5):1246-54. PubMed ID: 18627461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae.
    Grandin N; Gallego ME; White CI; Charbonneau M
    DNA Repair (Amst); 2020 Dec; 96():102996. PubMed ID: 33126043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible manipulation of telomerase expression and telomere length. Implications for the ionizing radiation response and replicative senescence of human cells.
    Rubio MA; Kim SH; Campisi J
    J Biol Chem; 2002 Aug; 277(32):28609-17. PubMed ID: 12034742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of telomeres and telomerase in cell life span.
    Counter CM
    Mutat Res; 1996 Oct; 366(1):45-63. PubMed ID: 8921986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Telomeres, replicative senescence and human ageing.
    Kipling D
    Maturitas; 2001 Feb; 38(1):25-37; discussion 37-8. PubMed ID: 11311583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic Telomere Shortening and the Route to Limitless Replicative Potential.
    Ye Y; Yang Z; Lei J
    J Comput Biol; 2019 Apr; 26(4):350-363. PubMed ID: 30762424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.