These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34627530)
1. An alternative strategy to construct uniform MOFs-Grafted silica core-shell composites as mixed-mode stationary phase for chromatography separation. Si T; Wang S; Zhang H; Lu X; Wang L; Liang X; Guo Y Anal Chim Acta; 2021 Oct; 1183():338942. PubMed ID: 34627530 [TBL] [Abstract][Full Text] [Related]
2. Core-shell MOFs-based composites of defect-functionalized for mixed-mode chromatographic separation. Si T; Wang L; Zhang H; Lu X; Liang X; Wang S; Guo Y J Chromatogr A; 2022 May; 1671():463011. PubMed ID: 35398699 [TBL] [Abstract][Full Text] [Related]
3. One-pot fabrication and evaluation of β-ketoenamine covalent organic frameworks@silica composite microspheres as reversed-phase/hydrophilic interaction mixed-mode stationary phase for high performance liquid chromatography. Xia Y; Wang L; Liu Y; Liu J; Bai Q J Chromatogr A; 2024 Aug; 1728():464998. PubMed ID: 38795423 [TBL] [Abstract][Full Text] [Related]
4. Facile fabrication of silica@covalent organic polymers core-shell composites as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase/ion-exchange chromatography. Chen J; Peng H; Zhang Z; Zhang Z; Ni R; Chen Y; Chen P; Peng J Talanta; 2021 Oct; 233():122524. PubMed ID: 34215027 [TBL] [Abstract][Full Text] [Related]
5. Non-conjugated flexible network for the functional design of silica-based stationary phase for mixed-mode liquid chromatography. Fan F; Lu X; Wang S; Liang X; Wang L; Guo Y Talanta; 2021 Oct; 233():122548. PubMed ID: 34215051 [TBL] [Abstract][Full Text] [Related]
6. A novel approach for the preparation of core-shell MOF/polymer composites as mixed-mode stationary phase. Si T; Wang L; Zhang H; Liang X; Lu X; Wang S; Guo Y Talanta; 2021 Sep; 232():122459. PubMed ID: 34074436 [TBL] [Abstract][Full Text] [Related]
7. Dispersive hierarchically porous composites based on defective MOFs as mixed-mode stationary phases for chromatographic separation. Si T; Wang S; Guo Y; Liang X; Rong R Mikrochim Acta; 2024 Mar; 191(4):198. PubMed ID: 38483636 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of two-dimensional metal-organic framework nanosheets/PDA composites as mixed-mode stationary phase for chromatographic separation. Si T; Lu X; Zhang H; Liang X; Wang S; Guo Y Mikrochim Acta; 2021 Oct; 188(10):360. PubMed ID: 34599383 [TBL] [Abstract][Full Text] [Related]
9. A new strategy for the preparation of core-shell MOF/Polymer composite material as the mixed-mode stationary phase for hydrophilic interaction/ reversed-phase chromatography. Si T; Lu X; Zhang H; Liang X; Wang S; Guo Y Anal Chim Acta; 2021 Jan; 1143():181-188. PubMed ID: 33384116 [TBL] [Abstract][Full Text] [Related]
10. MOF-74@SiO Liu M; Jing Y; Zhang L; Zhou Y; Yan H; Song Y; Qiao X J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Jan; 1163():122506. PubMed ID: 33388523 [TBL] [Abstract][Full Text] [Related]
11. Novel PEI/Zein core-shell composite as mixed-mode stationary phase for high performance liquid chromatography. Shen Q; Tang C; Xu X; Liu G; Shao S; Yao W; Dong S J Chromatogr A; 2024 Aug; 1730():465159. PubMed ID: 39025022 [TBL] [Abstract][Full Text] [Related]
12. Design and evaluation of novel MOF-polymer core-shell composite as mixed-mode stationary phase for high performance liquid chromatography. Si T; Wang S; Zhang H; Wang L; Lu X; Liang X; Guo Y Mikrochim Acta; 2021 Feb; 188(3):76. PubMed ID: 33559844 [TBL] [Abstract][Full Text] [Related]
13. Preparation of hydrogel nanocomposite functionalized silica microspheres and its application in mixed-mode liquid chromatography. Fan F; Lu X; Liang X; Wang L; Guo Y J Chromatogr A; 2022 Jan; 1662():462745. PubMed ID: 34933186 [TBL] [Abstract][Full Text] [Related]
14. An alternative approach for the preparation of a core-shell bimetallic central metal-organic framework as a hydrophilic interaction liquid chromatography stationary phase. Si T; Wang L; Lu X; Liang X; Wang S; Guo Y Analyst; 2020 Jun; 145(11):3851-3856. PubMed ID: 32215403 [TBL] [Abstract][Full Text] [Related]
15. Construction of MOFs@COFs composite material as stationary phase for efficient separation of diverse organic compounds. Zhang T; Sun Y; Feng X; Li J; Zhao W; Xiang G; He L; Zhang S Anal Chim Acta; 2024 Feb; 1288():342160. PubMed ID: 38220292 [TBL] [Abstract][Full Text] [Related]
16. Preparation and evaluation of 2-methylimidazolium-functionalized silica as a mixed-mode stationary phase for hydrophilic interaction and anion-exchange chromatography. Yang B; Liu H; Chen J; Guan M; Qiu H J Chromatogr A; 2016 Oct; 1468():79-85. PubMed ID: 27646061 [TBL] [Abstract][Full Text] [Related]
17. Preparation of value-added metal-organic frameworks for high-performance liquid chromatography. Towards green chromatographic columns. Aqel A; Alkatheri N; Ghfar A; Alsubhi AM; ALOthman ZA; Badjah-Hadj-Ahmed AY J Chromatogr A; 2021 Feb; 1638():461857. PubMed ID: 33486220 [TBL] [Abstract][Full Text] [Related]
18. Monomer-mediated fabrication of microporous organic network@silica microsphere for reversed-phase/hydrophilic interaction mixed-mode chromatography. Sun HF; Cui YY; Zhen CQ; Yang CX Talanta; 2023 Jan; 251():123763. PubMed ID: 35932636 [TBL] [Abstract][Full Text] [Related]
19. [Preparation and chromatographic properties of 1-vinyl-3-dodecylimidazole bromide silica-bonded stationary phase]. Li X; Liang P; Zhou Y; Qiao X Se Pu; 2020 Nov; 38(11):1263-1269. PubMed ID: 34213096 [TBL] [Abstract][Full Text] [Related]
20. 2D metal-organic framework nanosheets-assembled core-shell composite material as stationary phase for hydrophilic interaction liquid chromatography. Si T; Liang X; Lu X; Wang L; Wang S; Guo Y Talanta; 2021 Jan; 222():121603. PubMed ID: 33167271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]