BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 34628063)

  • 1. Protein-protein interaction relation extraction based on multigranularity semantic fusion.
    Li Y; Chen Y; Qin Y; Hu Y; Huang R; Zheng Q
    J Biomed Inform; 2021 Nov; 123():103931. PubMed ID: 34628063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Artificial Neural Networks Reveal a Distributed Cortical Network Encoding Propositional Sentence-Level Meaning.
    Anderson AJ; Kiela D; Binder JR; Fernandino L; Humphries CJ; Conant LL; Raizada RDS; Grimm S; Lalor EC
    J Neurosci; 2021 May; 41(18):4100-4119. PubMed ID: 33753548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning entity-oriented representation for biomedical relation extraction.
    Hu Y; Chen Y; Qin Y; Huang R
    J Biomed Inform; 2023 Nov; 147():104527. PubMed ID: 37852347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neuralized feature engineering method for entity relation extraction.
    Chen Y; Yang W; Wang K; Qin Y; Huang R; Zheng Q
    Neural Netw; 2021 Sep; 141():249-260. PubMed ID: 33930566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting graph kernels for high performance biomedical relation extraction.
    Panyam NC; Verspoor K; Cohn T; Ramamohanarao K
    J Biomed Semantics; 2018 Jan; 9(1):7. PubMed ID: 29382397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-granularity heterogeneous graph attention networks for extractive document summarization.
    Zhao Y; Wang L; Wang C; Du H; Wei S; Feng H; Yu Z; Li Q
    Neural Netw; 2022 Nov; 155():340-347. PubMed ID: 36113341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on pharmaceutical text relationship extraction based on heterogeneous graph neural networks.
    Zou S; Liu Z; Wang K; Cao J; Liu S; Xiong W; Li S
    Math Biosci Eng; 2024 Jan; 21(1):1489-1507. PubMed ID: 38303474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical-induced disease relation extraction with dependency information and prior knowledge.
    Zhou H; Ning S; Yang Y; Liu Z; Lang C; Lin Y
    J Biomed Inform; 2018 Aug; 84():171-178. PubMed ID: 30017973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LBERT: Lexically aware Transformer-based Bidirectional Encoder Representation model for learning universal bio-entity relations.
    Warikoo N; Chang YC; Hsu WL
    Bioinformatics; 2021 Apr; 37(3):404-412. PubMed ID: 32810217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature.
    Murugesan G; Abdulkadhar S; Natarajan J
    PLoS One; 2017; 12(11):e0187379. PubMed ID: 29099838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-level semantic fusion network for Chinese medical named entity recognition.
    Shi J; Sun M; Sun Z; Li M; Gu Y; Zhang W
    J Biomed Inform; 2022 Sep; 133():104144. PubMed ID: 35878823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Encoding and Decoding With Distributed Sentence Representations.
    Sun J; Wang S; Zhang J; Zong C
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):589-603. PubMed ID: 33052868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enriching contextualized language model from knowledge graph for biomedical information extraction.
    Fei H; Ren Y; Zhang Y; Ji D; Liang X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation Extraction in Biomedical Texts Based on Multi-Head Attention Model With Syntactic Dependency Feature: Modeling Study.
    Li Y; Hui L; Zou L; Li H; Xu L; Wang X; Chua S
    JMIR Med Inform; 2022 Oct; 10(10):e41136. PubMed ID: 36264604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A BIGRU-Based Stacked Attention Network for Biomedical Named Entity Recognition with Chinese EMRs.
    Chen JQ; Zhu ZC; Zhang F; Zeng K; Jiang HZ; Cheng ZN
    Stud Health Technol Inform; 2023 Nov; 308():757-767. PubMed ID: 38007808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and Research on Chinese Semantic Mapping Based on Linguistic Features and Sparse Self-Learning Neural Networks.
    Zhang H; Chao B; Huang Z; Li T
    Comput Intell Neurosci; 2022; 2022():2315802. PubMed ID: 35769283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed representation and one-hot representation fusion with gated network for clinical semantic textual similarity.
    Xiong Y; Chen S; Qin H; Cao H; Shen Y; Wang X; Chen Q; Yan J; Tang B
    BMC Med Inform Decis Mak; 2020 Apr; 20(Suppl 1):72. PubMed ID: 32349764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adverse drug reaction detection via a multihop self-attention mechanism.
    Zhang T; Lin H; Ren Y; Yang L; Xu B; Yang Z; Wang J; Zhang Y
    BMC Bioinformatics; 2019 Sep; 20(1):479. PubMed ID: 31533622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis.
    Ormerod M; Martínez Del Rincón J; Devereux B
    JMIR Med Inform; 2021 May; 9(5):e23099. PubMed ID: 34037527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural sentence embedding models for semantic similarity estimation in the biomedical domain.
    Blagec K; Xu H; Agibetov A; Samwald M
    BMC Bioinformatics; 2019 Apr; 20(1):178. PubMed ID: 30975071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.